精英家教网 > 高中数学 > 题目详情
设f(x)=
ax2+1bx+c
(a,b,c∈Z)满足f(-x)=-f(x),且在[1,+∞)上单调递增.若有f(1)=2,f(2)<3成立.
(1)求a,b,c的值;
(2)用定义证明f(x在(-1,0))上是减函数.
分析:(1)利用f(-x)=-f(x),求出c的值,利用f(1)=2,f(2)<3,即可求得b,c的值;
(2)利用单调性的定义,按照取值、作差、变形定号、下结论的方法,即可证明.
解答:(1)解:∵f(-x)=-f(x),
ax2+1
-bx+c
=-
ax2+1
bx+c

∴bx+c=bx-c,∴c=0
∵f(1)=2,∴a+1=2b
∴a=2b-1
∵f(2)<3
4a+1
2b
<3
若b>0,则4a+1<6b
将a=2b-1代入,可得2b<3,∴b<
3
2

∵a,b∈Z,∴b=1,a=1
若b<0,则b>
3
2
,不成立
∴a=1,b=1,c=0
(2)证明:由(1)知,f(x)=
x2+1
x
=x+
1
x

设-1<x1<x2<0,则f(x1)-f(x2)=(x1+
1
x1
)-(x2+
1
x2
)=(x1-x2)(1-
1
x1x2
)

∵-1<x1<x2<0,
x1-x2<0,1-
1
x1x2
<0

(x1-x2)(1-
1
x1x2
)>0

∴f(x1)-f(x2)>0
∴f(x1)>f(x2
∴f(x在(-1,0))上是减函数.
点评:本题考查函数奇偶性与单调性的结合,考查函数单调性的证明,考查学生分析解决问题的能力,属于中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

13、设f(x)=ax2+bx+c(a≠0),对于任意-1≤x≤1,有f(x)|≤1;求证|f(2)|≤7.

查看答案和解析>>

科目:高中数学 来源: 题型:

对于函数f(x),其定义域为D,若任取x1、x2∈D,且x1≠x2,若f(
x1+x2
2
)>
1
2
[f(x1)+f(x2)],则称f(x)为定义域上的凸函数.
(1)设f(x)=ax2(a>0),试判断f(x)是否为其定义域上的凸函数,并说明原因;
(2)若函数f(x)=㏒ax(a>0,且a≠1)为其定义域上的凸函数,试求出实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

设f(x)=ax2+x-a,g(x)=2ax+5-3a
(1)若f(x)在x∈[0,1]上的最大值是
54
,求a的值;
(2)若对于任意x1∈[0,1],总存在x0∈[0,1],使得g(x0)=f(x1)成立,求a的取值范围;
(3)若f(x)=g(x)在x∈[0,1]上有解,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

对于给定正数k,定fk(x)=
f(x)   (f(x)≤k)
k    (f(x)>k)
,设f(x)=ax2-2ax-a2+5a+2,对任意x∈R和任意a∈(-∞,0)恒有fk(x)=
f(x)
,则(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•闵行区二模)设f(x)=ax2+bx,且1≤f(-1)≤2,2≤f(1)≤4,则f(2)的最大值为
14
14

查看答案和解析>>

同步练习册答案