精英家教网 > 高中数学 > 题目详情

【题目】选修4-5:不等式选讲

已知函数.

(1)当时,求不等式的解集;

(2)若不等式的解集为空集,求的取值范围.

【答案】(1);(2).

【解析】

(1)利用零点分类讨论法求不等式的解集;(2)由题得|x+1|-|x-a|<2a恒成立,再求出, 解不等式a+1<2a得解.

(1)当a=2时,不等式,即|x+1|-|x-2|>2,

时,原不等式可化为-x-1+x-2>2,即-3>2,此时原不等式无解;

时,原不等式可化为x+1+x-2>2,解得,所以

当x>2时,原不等式可化为x+1-x+2>2,即3>2,此时原不等式恒成立,

所以x>2;

综上,原不等式的解集为.

(2)由的解集为空集得的解集为空集,

所以|x+1|-|x-a|<2a恒成立.

因为,所以

所以当且仅当时,

所以a+1<2a,

解得a>1,

的取值范围为.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】《中国诗词大会》是央视推出的一档以“赏中华诗词,寻文化基因,品生活之美”为宗旨的大型文化类竞赛节目,邀请全国各个年龄段、各个领域的诗词爱好者共同参与诗词知识比拼。“百人团”由一百多位来自全国各地的选手组成,成员上至古稀老人,下至垂髫小儿,人数按照年龄分组统计如下表:

分组(年龄)

频数(人)

(1)用分层抽样的方法从“百人团”中抽取人参加挑战,求从这三个不同年龄组中分别抽取的挑战者的人数;

(2)在(1)中抽出的人中,任选人参加一对一的对抗比赛,求这人来自同一年龄组的概率。

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在直角梯形ABCD中,EAB的中点.沿CE折起,使点B到达点F的位置,且平面CEF与平面ADCE所成的二面角为.

1)求证:平面平面AEF

2)求直线DF与平面CEF所成角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图是某学校研究性课题《什么样的活动最能促进同学们进行垃圾分类》向题的统计图(每个受访者都只能在问卷的5个活动中选择一个),以下结论错误的是(  )

A. 回答该问卷的总人数不可能是100

B. 回答该问卷的受访者中,选择“设置分类明确的垃圾桶”的人数最多

C. 回答该问卷的受访者中,选择“学校团委会宣传”的人数最少

D. 回答该问卷的受访者中,选择“公益广告”的人数比选择“学校要求”的少8

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】给出下列四个说法,其中正确的是( )

A.命题“若,则”的否命题是“若,则

B.”是“双曲线的离心率大于”的充要条件

C.命题“”的否定是“

D.命题“在中,若,则是锐角三角形”的逆否命题是假命题

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在正四棱锥中,O为顶点S在底面ABCD内的投影,P为侧棱SD的中点,且.

(1)证明:平面PAC.

(2)求直线BC与平面PAC的所成角的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知,.

(1)求的值;

(2)证明: 存在唯一的极小值点,.

(参考数据: )

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】从分别写有数字1,2,3,4,5的5张卡片中随机抽取1张,放回后再随机抽取1张,则抽得的第一张卡片上的数字不大于第二张卡片的概率是( )

A. B. C. D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】6名男医生和3名女医生中选出5人组成一个医疗小组,请解答下列问题:

1)如果这个医疗小组中男女医生都不能少于2人,共有多少种不同的建组方案?(用数字作答)

2)男医生甲要担任医疗小组组长,所以必选,而且医疗小组必须男女医生都有,共有多少种不同的建组方案?

3)男医生甲与女医生乙不被同时选中的概率.(化成最简分数)

查看答案和解析>>

同步练习册答案