精英家教网 > 高中数学 > 题目详情

若函数数学公式,且0≤x≤1,则有


  1. A.
    f(x)≥1
  2. B.
    数学公式
  3. C.
    数学公式
  4. D.
    数学公式
D
分析:结合指数函数数在[0,1]上的单调性可求.
解答:∵0≤x≤1且函数单调递减

故选D
点评:本题主要考查了指数函数的单调性的应用,属于基础试题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

给出下列四个命题:
①函数f(x)=x|x|+bx+c为奇函数的充要条件是c=0;
②关于x的方程ax2-2ax-1=0有且仅有一个实数根,则实数a=-1;
③若函数f(x)=lg(x2+ax-a)的值域是R,则a≤-4或a≥0;
④若函数y=f(x-1)是偶函数,则函数y=f(x)的图象关于直线x=0对称.
其中所有正确命题的序号是
①②③
①②③

查看答案和解析>>

科目:高中数学 来源: 题型:

已知a>0,设命题p:函数f(x)=ax在R上是增函数,q:不等式x+|x-2a|>1的解集为R,
(1)若函数y=f(x+1)恒过定点M(1,4),求a
(2)若p和q中有且只有一个命题为真命题,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•韶关一模)已知函数f(x)=ax3+bx2+(b-a)x(a,b是不同时为零的常数),其导函数为f'(x).
(1)当a=
1
3
时,若不等式f′(x)>-
1
3
对任意x∈R恒成立,求b的取值范围;
(2)若函数f(x)为奇函数,且在x=1处的切线垂直于直线x+2y-3=0,关于x的方程f(x)=-
1
4
t
在[-1,t](t>-1)上有且只有一个实数根,求实数t的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

关于下列命题:
①函数f(x)=loga(x-2)-1(a>0,a≠1)的图象恒过定点(3,-1);
②若函数y=f(x+1)的定义域是[-1,1],则y=f(x)的定义域是[-2,0];
③若函数y=f(x)是奇函数,当x<0时,f(x)=x2+5x,则f(2)=6
④设α∈{-1,
1
3
1
2
,1,2,3}
,则使幂函数y=xα为奇函数且在(0,+∞)上单调递增的α值的个数为3个
⑤若函数y=|2x-1|-m(m∈R)只有一个零点,则m≥1
其中正确的命题的序号是
①③⑤
①③⑤
( 注:把你认为正确的命题的序号都填上).

查看答案和解析>>

同步练习册答案