精英家教网 > 高中数学 > 题目详情
下列说法中:
①函数f(x)=
x-1
x+1
与g(x)=x的图象没有公共点;
②若定义在R上的函数f(x)满足f(x+2)=-f(x-1),则函数f(x)周期为6;
③若对于任意x∈(1,3),不等式x2-ax+2<0恒成立,则a>
11
3

④函数y=log2(x2-ax-a)的值域为R,则a∈(-4,0);
其中正确命题的序号为
 
(把所有正确命题的序号都填上)
分析:①考查方程f(x)=g(x)解的个数
②推导f(x+6)=f(x)
③转化为a>x+
2
x
在(1,3)上恒成立,从而转化为求a≥(x+
2
x
)max

④x2-ax-a可取所有正数,△=a2+4a≥0
解答:解:①令f(x)=g(x)?
x-1
x+1
=x
,可得方程无解即图象无交点,①正确
②由f(x+2)=-f(x-1)可得f(x+3)=-f(x)?f(x+6)=f(x),从而可得函数的周期为6,②正确
③由任意x∈(1,3),不等式x2-ax+2<0恒成立?a>x+
2
x
在(1,3)上恒成立,故a≥
11
3
③错误
④函数y=log2(x2-ax-a)的值域为R,可得△=a2+4a≥0则a∈[0,+∞)∪(-∞,-4]④错误
故答案为①②
点评:本题综合考查了函数的性质:周期、最值问题、对数函数的值域问题.解题中用到的数学思想有:方程与函数的思想,等价转化的思想.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

下列说法中:
①函数f(x)=
x-1
x+1
与g(x)=x的图象没有公共点;
②若定义在R上的函数f(x)满足f(x+3)=-f(x),则6为函数f(x)的周期;
③若对于任意x∈(1,3),不等式x2-ax+2<0恒成立,则a>
11
3

④定义:“若函数f(x)对于任意x∈R,都存在正常数M,使|f(x)|≤M|x|恒成立,则称函数f(x)为有界泛函.”由该定义可知,函数f(x)=x2+1为有界泛函.
则其中正确的是
①②③
①②③

查看答案和解析>>

科目:高中数学 来源: 题型:

下列说法中:
①函数f(x)=
1
lgx
在(0,+∞)
是减函数;
②在平面上,到定点(2,-1)的距离与到定直线3x-4y-10=0距离相等的点的轨迹是抛物线;
③设函数f(x)=cos(
3
x+
π
6
)
,则f(x)+f'(x)是奇函数;
④双曲线
x2
25
-
y2
16
=1
的一个焦点到渐近线的距离是5;
其中正确命题的序号是

查看答案和解析>>

科目:高中数学 来源: 题型:

下列说法中:
①函数f(x)=
x-1
x+1
与g(x)=x的图象没有公共点;
②若定义在R上的函数f(x)满足f(x+2)=-f(x-1),则6为函数f(x)的周期;
③若对于任意x∈(1,3),不等式x2-ax+2<0恒成立,则a>
11
3

④定义:“若函数f(x)对于任意x∈R,都存在正常数M,使|f(x)|≤M|x|恒成立,则称函数f(x)为有界泛函.”由该定义可知,函数f(x)=x2+1为有界泛函.
则其中正确的个数为
3
3

查看答案和解析>>

科目:高中数学 来源:河南省固始高中2011届高三第一次月考文科数学试题 题型:022

下列说法中:

①函数f(x)=与g(x)=x的图象没有公共点;

②若定义在R上的函数f(x)满足f(x+2)=-f(x-1),则函数f(x)周期为6;

③若对于任意x∈(1,3),不等式x2-ax+2<0恒成立,则a>

④函数y=log2(x2-ax-a)的值域为R,则a∈(-4,0);

其中正确命题的序号为________(把所有正确命题的序号都填上)

查看答案和解析>>

同步练习册答案