精英家教网 > 高中数学 > 题目详情
如图,椭圆
x2
25
+
y2
9
=1
上的点M到焦点F1的距离为2,N为MF1的中点,则|ON|(O为坐标原点)的值为(  )
分析:根据椭圆的定义,椭圆上任意一点到两个焦点F1、F2距离之和等于长轴2a,因此求出椭圆的半长轴a=5,从而得到|MF1|+|MF2|=10,根据点M到左焦点F1的距离为2,得到|MF2|=10-2=8,最后在△MF1F2中,利用中位线定理,得到|ON|=
1
2
|MF2|=4.
解答:解:∵椭圆方程为
x2
25
+
y2
9
=1

∴椭圆的a=5,长轴2a=10,可得椭圆上任意一点到两个焦点F1、F2距离之和等于10.
∴|MF1|+|MF2|=10
∵点M到左焦点F1的距离为2,即|MF1|=2,
∴|MF2|=10-2=8,
∵△MF1F2中,N、O分别是MF1、F1F2中点
∴|ON|=
1
2
|MF2|=4.
故选A.
点评:本题以椭圆的焦点三角形为例,给出椭圆上一点到左焦点的距离,求三角形的中位线长.着重考查了三角形中位线定理和椭圆的定义等知识点,属于基础题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

精英家教网如图把椭圆
x2
25
+
y2
16
=1
的长轴AB分成8分,过每个分点作x轴的垂线交椭圆的上半部分于P1,P2,…P7七个点,F是椭圆的一个焦点,则|P1F|+|P2F|+…+|P7F|=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,A1,A为椭圆的两个顶点,F1,F2为椭圆的两个焦点.
(Ⅰ)写出椭圆的方程;
(Ⅱ)过线段OA上异于O,A的任一点K作OA的垂线,交椭圆于P,P1两点,直线A1P与AP1交于点M.求证:点M在双曲线
x2
25
-
y2
9
=1
上.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图:在椭圆
x2
25
+
y2
16
=1中有一内接矩形ABCD(四个顶点都在椭圆上),A点在第一象限内.当内接矩形ABCD的面积最大时,点A的坐标是(  )

查看答案和解析>>

科目:高中数学 来源:四川 题型:填空题

如图把椭圆
x2
25
+
y2
16
=1
的长轴AB分成8分,过每个分点作x轴的垂线交椭圆的上半部分于P1,P2,…P7七个点,F是椭圆的一个焦点,则|P1F|+|P2F|+…+|P7F|=______.
精英家教网

查看答案和解析>>

同步练习册答案