精英家教网 > 高中数学 > 题目详情
设函数f(x)=
4+
1
x2
,数列{an}满足:点P(an
1
an+1
)
在曲线y=f(x)上,其中n∈N*,且a1=1,an>0.
(I)求a2和a3
(II)求数列{an}的通项公式;
(III)若bn=
1
an2
+2n
,n∈N*,求数列{bn}的前n项和Tn
分析:(I)由题意可得,
1
an+1
=f(an)
=
4+
1
an2
,把n=,2直接代入即可求解
(II)由已知可得,
1
an+12
-
1
an2
=4
,结合等差数列的通项公式可求
1
an2
,进而可求
(III)bn=
1
an2
+2n
=4n-3+2n,利用分组求和,结合等差数列与等比数列的求和公式即可求解
解答:解:(I)由题意可得,
1
an+1
=f(an)
=
4+
1
an2

当n=1时,
1
a2
=
5
a2=
5
5

当n=2时,
1
a3
=
9
=3即a3=
1
3

(II)∵a1=1,an>0.
1
an+12
-
1
an2
=4

1
a1
=1

∴数列{
1
an2
}是以1为首项,以4为公差的等差数列
1
an2
=1+4(n-1)=4n-3
an=
1
4n-3

(III)bn=
1
an2
+2n
=4n-3+2n
∴Tn=(1+21)+(5+22)+…+(4n-3+2n
=n+
n(n-1)
2
×4+
2(1-2n)
1-2

=2n2-n+2n+1-2
点评:本题主要考查了利用数列的递推公式构造等差数列求解数列的通项公式,及利用分组求和方法的应用,等差数列与等比数列的求和公式的应用.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

设函数f(x)是定义域在(0,+∞),且对任意m,n∈(0,+∞)都有f(mn)=f(m)+f(n),f(4)=1,当x>1时,恒有f(x)>0
(1)求证:f(x)在(0,+∞)上是增函数
(2)解不等式f(x+6)+f(x)<2
(3)若?x∈[4,16],都有f(x)≤a,求实数a的取值范围

查看答案和解析>>

科目:高中数学 来源: 题型:

设函数f(x)是定义在R上的偶函数.若当x≥0时,f(x)=
|1-
1
x
0
x>0;,
x=0.

(1)求f(x)在(-∞,0)上的解析式.
(2)请你作出函数f(x)的大致图象.
(3)当0<a<b时,若f(a)=f(b),求ab的取值范围.
(4)若关于x的方程f2(x)+bf(x)+c=0有7个不同实数解,求b,c满足的条件.

查看答案和解析>>

科目:高中数学 来源: 题型:

设函数f(x)=2cos2x-
3
sin2x+a(a∈R)在区间[0,
π
2
]上的最小值为4,那么a的值等于
5
5

查看答案和解析>>

科目:高中数学 来源: 题型:

设函数f(x)=m(cosx+sinx)2+1-2sin2x,x∈R,且y=f(x)的图象经过点(
π4
,2)

(1)求实数m的值;
(2)求函数f(x)的最小值及此时x值的集合.

查看答案和解析>>

同步练习册答案