已知函数
有三个极值点。
(I)证明:
;
(II)若存在实数c,使函数
在区间
上单调递减,求
的取值范围。
(1)同解析;(2)
的取值范围是
.
【解析】解:(I)因为函数
有三个极值点,
所以
有三个互异的实根.
设
则![]()
当
时,
在
上为增函数;
当
时,
在
上为减函数;
当
时,
在
上为增函数;
所以函数
在
时取极大值,在
时取极小值.
当
或
时,
最多只有两个不同实根.
因为
有三个不同实根, 所以
且
.
即
,且
,
解得
且
故
.
(II)由(I)的证明可知,当
时,
有三个极值点.
不妨设为
(
),则![]()
所以
的单调递减区间是
,![]()
若
在区间
上单调递减,
则![]()
, 或![]()
,
若![]()
,则
.由(I)知,
,于是![]()
若![]()
,则
且
.由(I)知,![]()
又
当
时,
;
当
时,
.
因此,
当
时,
所以
且![]()
即
故
或
反之, 当
或
时,
总可找到
使函数
在区间
上单调递减.
综上所述,
的取值范围是
.
科目:高中数学 来源:2013届河北省高二上学期期末考试文科数学 题型:解答题
(本题12分)已知函数
有三个极值点。
(1)求
的取值范围
(2)若存在
,使函数
在区间
上单调递减,求
的取值范围。
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com