精英家教网 > 高中数学 > 题目详情
已知定义在同一个区间(
3
3
6
2
)上的两个函数f(x)=x2-2alnx,g(x)=x3-bx2+x在x=x0处的切线平行于x轴.
(1)求实数a和b的取值范围;
(2)试问:是否存在实数x1,x2,当x1,x0,x2成等比数列时,等式f(x1)+f(x2)=2g(x0)成立?若成立,求出实数a的取值范围;若不存在,请说明理由.
(1)f′(x)=2x-
2a
x
令f′(x)=0
∵a>0∴x=
a

3
3
a
6
2

1
3
<a<
3
2

g′(x)=3x2-2bx+1
令g′(x)=0得3a-2b
a
+1=0
∴b=
3a+1
2
a
=
1
2
(3
a
+
1
a

3
3
<t=
a
6
2

1
2
(3t+
1
t
)在(
3
3
6
2
)上单调递减则b∈(
3
11
6
12

(2)假设存在实数x1,x2∈(
3
3
6
2
)则x1•x2=a
由题意得x12+x22-2alnx1-2alnx2=-a
a
+
a

x12+x22-2x1•x2=2alna-a
a
+
a
-2a
令φ(a)=2alna-a
a
+
a
-2a  (
1
3
<a<
3
2

φ′(a)=2lna+
1
2
a
-
3
2
a

φ‘’(a)=
2
a
-
1
4a
a
-
3
4
a
=
8
a
-1-3a
4a
a
>0

∴φ′(a)在(
1
3
3
2
)上是增函数
∴φ′(a)<φ′(
3
2
)=2ln
3
2
-
7
6
12
<0
∴φ(a)在(
1
3
3
2
)上是减函数
∴φ(a)<φ(
1
3
)=
2
3
ln
1
3
+
3
3
-
3
9
-
2
3
<0
∴(x1-x22<0
即不存在满足条件的x1与x2
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

给出下列四个命题:
①函数y=|x|与函数y=(
x
)2
表示同一个函数;
②已知函数f(x+1)=x2,则f(e)=e2-1
③已知函数f(x)=4x2+kx+8在区间[5,20]上具有单调性,则实数k的取值范围是(-∞,40]∪[160,+∞)
④已知f(x)、g(x)是定义在R上的两个函数,对任意x、y∈R满足关系式f(x+y)+f(x-y)=2f(x)•g(y),且f(0)=0,但x≠0时f(x)•g(x)≠0则函数f(x)、g(x)都是奇函数.
其中正确命题的个数是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2011•温州二模)已知定义在同一个区间(
3
3
6
2
)上的两个函数f(x)=x2-2alnx,g(x)=x3-bx2+x在x=x0处的切线平行于x轴.
(1)求实数a和b的取值范围;
(2)试问:是否存在实数x1,x2,当x1,x0,x2成等比数列时,等式f(x1)+f(x2)=2g(x0)成立?若成立,求出实数a的取值范围;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源:2012-2013学年四川省绵阳市涪城区南山中学高一(上)期中数学试卷(解析版) 题型:选择题

给出下列四个命题:
①函数y=|x|与函数表示同一个函数;
②已知函数f(x+1)=x2,则f(e)=e2-1
③已知函数f(x)=4x2+kx+8在区间[5,20]上具有单调性,则实数k的取值范围是(-∞,40]∪[160,+∞)
④已知f(x)、g(x)是定义在R上的两个函数,对任意x、y∈R满足关系式f(x+y)+f(x-y)=2f(x)•g(y),且f(0)=0,但x≠0时f(x)•g(x)≠0则函数f(x)、g(x)都是奇函数.
其中正确命题的个数是( )
A.1个
B.2个
C.3个
D.0个

查看答案和解析>>

科目:高中数学 来源:2011年浙江省温州市高考数学二模试卷(理科)(解析版) 题型:解答题

已知定义在同一个区间()上的两个函数f(x)=x2-2alnx,g(x)=x3-bx2+x在x=x处的切线平行于x轴.
(1)求实数a和b的取值范围;
(2)试问:是否存在实数x1,x2,当x1,x,x2成等比数列时,等式f(x1)+f(x2)=2g(x)成立?若成立,求出实数a的取值范围;若不存在,请说明理由.

查看答案和解析>>

同步练习册答案