精英家教网 > 高中数学 > 题目详情
17.已知函数f(x)=logax(a>0,a≠1),当0<x1<x2时,试比较f($\frac{{x}_{1}+{x}_{2}}{2}$)与$\frac{1}{2}$[f(x1)+f(x2)]的大小.

分析 根据题意和对数函数的图象画出图象,根据图象即可得到答案.

解答 解:当a>1时,画出函数f(x)=logax的图象:
如图:A(x1、f(x1)),B(x2,f(x2)),
连结AB取中点为D,过D做x轴的垂线交图象与点C,
则C($\frac{{x}_{1}+{x}_{2}}{2}$,f($\frac{{x}_{1}+{x}_{2}}{2}$)),
D($\frac{{x}_{1}+{x}_{2}}{2}$,$\frac{1}{2}$[f(x1)+f(x2)]),
因为函数的图象是上凸的,
所以f($\frac{{x}_{1}+{x}_{2}}{2}$)>$\frac{1}{2}$[f(x1)+f(x2)];
当0<a<1时,同上画出函数的图象,
因为函数的图象是下凸的,
所以f($\frac{{x}_{1}+{x}_{2}}{2}$)<$\frac{1}{2}$[f(x1)+f(x2)].

点评 本题考查对数函数的图象,以及分类讨论思想、数形结合思想,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

4.已知数列{an}的通项公式an=An2+B(A、B∈R),且a2=7,a4=31.求an及S4

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.函数f(x)=$\frac{x-1}{x+1}$的定义域是(  )
A.(-∞,-1)∪(1,+∞)B.(-∞,1)∪(1,∞)C.(-∞,-1)∪(-1,+∞)D.(1,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.已知函数f(x)=log2(x2-ax+2).
(1)当函数f(x)在①定义域为R,②值域为R时,求实数a的取值范围;
(2)若函数f(x)在区间[0,2]上有定义,且在该区间的值域为[1,3],求a的值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.阅读下列算法:(1)输入x.(2)判断x>2是否成立,若是,y=x; 否则,y=-2x+6.(3)输出y. 当输入的x∈[0,7]时,输出的y的取值范围是[2,7].

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.如图,在平面直角坐标系xOy中,点A(0,3),直线l:y=2x-4,设圆C的半径为1,圆心在l上.
(1)若圆心C也在直线y=x-1上,求圆C的方程;
(2)若点M满足MA=2MO,求点M的轨迹方程;
(3)若圆C上存在点N,使NA=2NO,求圆心C的横坐标a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.已知f(x)是定义在R上的偶函数,且当x≥0时,f(x)=2x,若对于任意的x∈[a,a+2],均有f(x+a)≥f2(x),则实数a取值范围是(  )
A.[1,+∞)B.$[-\frac{1}{2},1)$C.$(-∞,-\frac{3}{2}]$D.(0,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.已知函数f(x)=ex[2ax2-(1+4a)x+4a+2],其中a∈R.
(1)当a=1时,求曲线y=f(x)在点(1,f(1))处的切线方程;
(2)讨论函数f(x)的单调性并求出其单调区间.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.已知复数z满足(3+5i)z=34,则z=(  )
A.-3+5iB.-3-5iC.3+5iD.3-5i

查看答案和解析>>

同步练习册答案