精英家教网 > 高中数学 > 题目详情

已知函数是首项为2,公比为的等比数列,数列是首项为-2,第三项为2的等差数列.

(1)求数列的通项式.

(2)求数列的前项和.

 

【答案】

(1)  ,bn=2n-4-; (2) Tn=n2-3n-4+.

【解析】

试题分析:(1)直接用等比数列等差数列即可求得数列{}{bn}的通项公式.

(2) 数列是一个等差数列与一个等比数列的和,故其求和采用分组求和的方法.

试题解析:(1)∵数列{}是首项=2,公比q=的等比数列,

∴an=2·n1=22n       3分

依题意得数列{bn+an}的公差d==2,

∴bn+an=-2+2(n-1)=2n-4,

∴bn=2n-4-22n        6分

 (2) 设Sn的前n项和,由(1)得 Sn=4        9分

设数列{bn+an}的前n项和为Pn       则 Pn=n(n-3),

∴Tn=Pn-Sn=n(n-3)-4=n2-3n-4+22n    12分

考点:等差数列等比数列的通项公式及前n项和公式

 

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

定义:如果数列{an}的任意连续三项均能构成一个三角形的三边长,则称{an}为“三角形”数列.对于“三角形”数列{an},如果函数y=f(x)使得bn=f(an)仍为一个“三角形”数列,则称y=f(x)是数列{an}的“保三角形函数”,(n∈N).
(1)已知{an}是首项为2,公差为1的等差数列,若f(x)=kx,(k>1)是数列{an}的“保三角形函数”,求k的取值范围;
(2)已知数列{cn}的首项为2010,Sn是数列{cn}的前n项和,且满足4Sn+1-3Sn=8040,证明{cn}是“三角形”数列;
(3)[文科]若g(x)=lgx是(2)中数列{cn}的“保三角形函数”,问数列{cn}最多有多少项.
[理科]根据“保三角形函数”的定义,对函数h(x)=-x2+2x,x∈[1,A],和数列1,1+d,1+2d,(d>0)提出一个正确的命题,并说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

定义:如果数列{an}的任意连续三项均能构成一个三角形的三边长,则称{an}为“三角形”数列.对于“三角形”数列{an},如果函数y=f(x)使得bn=f(an)仍为一个“三角形”数列,则称y=f(x)是数列{an}的“保三角形函数”(n∈N*).
(Ⅰ)已知{an}是首项为2,公差为1的等差数列,若f(x)=kx(k>1)是数列{an}的“保三角形函数”,求k的取值范围;
(Ⅱ)已知数列{cn}的首项为2013,Sn是数列{cn}的前n项和,且满足4Sn+1-3Sn=8052,证明{cn}是“三角形”数列;
(Ⅲ)若g(x)=lgx是(Ⅱ)中数列{cn}的“保三角形函数”,问数列{cn}最多有多少项?
(解题中可用以下数据:lg2≈0.301,lg3≈0.477,lg2013≈3.304)

查看答案和解析>>

科目:高中数学 来源: 题型:

(2010•青浦区二模)[理科]定义:如果数列{an}的任意连续三项均能构成一个三角形的三边长,则称{an}为“三角形”数列.对于“三角形”数列{an},如果函数y=f(x)使得bn=f(an)仍为一个“三角形”数列,则称y=f(x)是数列{an}的“保三角形函数”,(n∈N*).
(1)已知{an}是首项为2,公差为1的等差数列,若f(x)=kx,(k>1)是数列{an}的“保三角形函数”,求k的取值范围;
(2)已知数列{cn}的首项为2010,Sn是数列{cn}的前n项和,且满足4Sn+1-3Sn=8040,证明{cn}是“三角形”数列;
(3)根据“保三角形函数”的定义,对函数h(x)=-x2+2x,x∈[1,A],和数列1,1+d,1+2d(d>0)提出一个正确的命题,并说明理由.

查看答案和解析>>

科目:高中数学 来源:2010年上海市静安、杨浦、青浦、宝山区高考数学二模试卷(文理合卷)(解析版) 题型:解答题

[理科]定义:如果数列{an}的任意连续三项均能构成一个三角形的三边长,则称{an}为“三角形”数列.对于“三角形”数列{an},如果函数y=f(x)使得bn=f(an)仍为一个“三角形”数列,则称y=f(x)是数列{an}的“保三角形函数”,(n∈N*).
(1)已知{an}是首项为2,公差为1的等差数列,若f(x)=kx,(k>1)是数列{an}的“保三角形函数”,求k的取值范围;
(2)已知数列{cn}的首项为2010,Sn是数列{cn}的前n项和,且满足4Sn+1-3Sn=8040,证明{cn}是“三角形”数列;
(3)根据“保三角形函数”的定义,对函数h(x)=-x2+2x,x∈[1,A],和数列1,1+d,1+2d(d>0)提出一个正确的命题,并说明理由.

查看答案和解析>>

同步练习册答案