精英家教网 > 高中数学 > 题目详情

已知向量数学公式=(sinA,cosA+1),数学公式=数学公式数学公式数学公式,且A为锐角.
(Ⅰ)求角A的大小;
(Ⅱ)设数学公式,求f(x)的单调递增区间及函数图象的对称轴.

解:(I)因为
所以

又因为A为锐角,
所以
(II)
=
=
=2

解得
解得x=
所以f(x)的单调递增区间为;函数图象的对称轴
分析:(I)利用向量平行的充要条件得到,利用和角公式化简为,求出A.
(II)利用三角函数的二倍角公式化简函数f(x),令求出函数的递增区间;求出函数的对称轴.
点评:解决三角函数的性质问题,应该先将三角函数化简为只含一个角一个函数,然后利用整体角处理的方法来解决.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知向量
m
=(sinA,cosA),
n
=(
3
,-1),
m
n
=1,且A为锐角.
(1)求角A的大小;
(2)求函数f(x)=cos2x+4cosAsinx(x∈R)的值域.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知向量
m
=(sinA,cosA),
n
=(
3
,-1),(
m
-
n
)⊥
m
,且A为锐角.
(Ⅰ) 求角A的大小;
(Ⅱ) 求函数f(x)=cos2x+4cosAsinx(x∈R)的值域.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知向量
m
=(sinA,sinB),
n
=(cosB,cosA),
m
n
=sin2C
,且A、B、C分别为△ABC的三边a、b、c所对的角.
(Ⅰ)求角C的大小;
(Ⅱ)求2sinA-sinB的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知向量
m
=(sinA,cosA+1),
n
=(1,
3
)
m
n
,且A为锐角.
(Ⅰ)求角A的大小;
(Ⅱ)设f(x)=4cosAsin
x
4
cos
x
4
-2
3
sin2
x
4
+
3
,求f(x)的单调递增区间及函数图象的对称轴.

查看答案和解析>>

科目:高中数学 来源: 题型:

在△ABC中,已知内角A、B、C所对的边分别为a、b、c,且a2+b2=c2+ab.
(1)若
a
b
=
cosB
cosA
,且c=2,求△ABC的面积;
(2)已知向量
m
=(sinA,cosA),
n
=(cosB,-sinB),求|
m
-2
n
|的取值范围.

查看答案和解析>>

同步练习册答案