精英家教网 > 高中数学 > 题目详情
15.(Ⅰ)求函数$y=\sqrt{x+2}+\frac{1}{x+1}$的定义域.
(Ⅱ)求值:27${\;}^{\frac{2}{3}}$+16${\;}^{-\frac{1}{2}}$-($\frac{1}{2}$)-2-($\frac{8}{27}$)${\;}^{-\frac{2}{3}}$.

分析 (Ⅰ)由根式内部的代数式大于等于0,分式的分母不为0联立不等式组得答案;
(Ⅱ)直接利用有理指数幂的运算性质化简求值.

解答 解:(Ⅰ)由$\left\{\begin{array}{l}{x+2≥0}\\{x+1≠0}\end{array}\right.$,得x≥-2且x≠-1,
∴函数$y=\sqrt{x+2}+\frac{1}{x+1}$的定义域为[-2,-1)∪(-1,+∞);
(Ⅱ)27${\;}^{\frac{2}{3}}$+16${\;}^{-\frac{1}{2}}$-($\frac{1}{2}$)-2-($\frac{8}{27}$)${\;}^{-\frac{2}{3}}$
=$({3}^{3})^{\frac{2}{3}}+({2}^{4})^{-\frac{1}{2}}-[(\frac{2}{3})^{3}]^{-\frac{2}{3}}$
=$9+\frac{1}{4}-4-\frac{9}{4}=3$.

点评 本题考查函数定义域的求法,考查了有理指数幂的运算性质,是基础的计算题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

5.已知椭圆C:$\frac{{x}^{2}}{2}$+y2=1及点P(1,$\frac{1}{2}$),过点P作直线l与椭圆C交于A、B两点,过A、B两点分别作C的切线交于点Q.
(1)求点Q的轨迹方程;
(2)求△ABQ的面积的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.已知(x,y)在映射f下的像是(x+y,x-y),则(1,7)在f下的原像为(4,-3).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.已知抛物线x2=y上一定点B(1,1)和两个动点P、Q,当P在抛物线上运动时,BP⊥PQ,则Q点的
纵坐标的取值范围是(  )
A.(-∞,-2]∪[2,+∞)B.(-∞,0]∪[3,+∞)C.(-∞,1]∪[3,+∞)D.(-∞,1]∪[4,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.x2+y2-x+y+r=0表示一个圆,则r的取值范围是(  )
A.r≤2B.r<2C.r<$\frac{1}{2}$D.r≤$\frac{1}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.已知直线l:x+my-3=0,圆C:(x-2)2+(y+3)2=9.
(1)若直线l与圆相切,求m的值;
(2)当m=-2时,直线l与圆C交于点E、F,O为原点,求△EOF的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.函数$f(x)=\frac{1}{{\sqrt{1-x}}}$的定义域是(  )
A.[1,+∞)B.(-∞,1)C.(-∞,1]D.(1,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.在直角坐标系xOy中,已知A(-3,0),B(3,0),动点C(x,y),若直线AC,BC的斜率kAC,kBC满足条件${k_{AC}}•{k_{BC}}=-\frac{4}{9}$.
(1)求动点C的轨迹方程;
(2)已知${F_1}(-\sqrt{5},0),{F_2}(\sqrt{5},0)$,问:曲线C上是否存在点P满足$\overrightarrow{P{F_1}}•\overrightarrow{P{F_2}}=0$?若存在求出P点坐标;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.已知数列{an}的各项均为正整数,其前n项和为Sn,若an+1=$\left\{\begin{array}{l}\frac{a_n}{2},{a_n}是偶数\\ 3{a_n}+1,{a_n}是奇数\end{array}$且a1=5,则S2015=4725.

查看答案和解析>>

同步练习册答案