精英家教网 > 高中数学 > 题目详情

已知抛物线的顶点在坐标原点,对称轴为x轴,焦点F在直线m:y=数学公式上,直线m与抛物线相交于A,B两点,P为抛物线上一动点(不同于A,B),直线PA,PB分别交该抛物线的准线l于点M,N.
(1)求抛物线方程;
(2)求证:以MN为直径的圆C经过焦点F,且当P为抛物线的顶点时,圆C与直线m相切.

解:(1)依题意,焦点F(1,0),抛物线方程为y2=4x.
(2)由得4x2-17x+4=0,x1=4,

,则
直线PA:,令x=-1,
,即
同理,直线PB:,令x=-1,得

,∴MF⊥NF,
∴以MN为直径的圆C经过焦点F.
当P为抛物线的顶点时,t=0,可得MN中点,即圆心
,即CF⊥AB,
∴圆C与直线m相切.
分析:(1)依题意可知焦点F的坐标,进而求得p,则抛物线的方程可得.
(2)把直线与抛物线方程联立,求得交点A,B的坐标,设出点P的坐标,则直线AP的斜率可表示出来,根据点斜式表示直线AP的方程,把x=-1代入求得M的纵坐标,同理可表示出直线PB的方程把x=-1代入求得N的纵坐标,进而求得判断出MF⊥NF,进而可知以MN为直径的圆C经过焦点F.当P为抛物线的顶点时,t=0,可得MN中点,即圆心坐标,进而求得,进而可知CF⊥AB,推断出圆C与直线m相切.
点评:本题主要考查了直线与圆锥曲线的综合问题.考查了学生运用数学知识分析问题和解决问题的能力.
练习册系列答案
相关习题

科目:高中数学 来源:山东省济宁五中2010届高三5月模拟(理) 题型:填空题

 已知抛物线和双曲线都经过点,它们在轴上有共同焦点,抛物线的顶点为坐

    标原点,则双曲线的标准方程是                 .

 

查看答案和解析>>

同步练习册答案