精英家教网 > 高中数学 > 题目详情
6.椭圆3x2+2y2=6的焦距为(  )
A.1B.2C.$\sqrt{5}$D.$2\sqrt{5}$

分析 求出椭圆的长半轴长与短半轴长,求和求解焦距.

解答 解:椭圆3x2+2y2=6的标准方程为:$\frac{{x}^{2}}{2}$+$\frac{{y}^{2}}{3}$=1.
可得a=$\sqrt{3}$,b=$\sqrt{2}$,c=1,
焦距为:2.
故选:C.

点评 本题考查椭圆的简单性质的应用,是基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

14.已知sinx+cosx=$\frac{4\sqrt{2}}{5}$,$\frac{π}{4}$<x<$\frac{π}{2}$,求下列各式的值:
(1)sinx•cosx;
(2)cosx-sinx.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.在△ABC中,内角A,B,C所对的边分别是a,b,c.已知acosB=bcosA,边BC上的中线长为4.
(Ⅰ)若$A=\frac{π}{6}$,求c;
(Ⅱ)求△ABC面积的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.在直角坐标系xOy中,已知点P是反比例函数y=$\frac{2\sqrt{3}}{x}$(x>0)图象上一个动点,以P为圆心的圆始终与y轴相切,设切点为A.
(1)如图1,⊙P运动到与x轴相切,设切点为K,判断四边形OKPA的形状,并说明理由.
(2)如图2,⊙P运动到与x轴相交,设交点为B,C.当四边形ABCP是菱形时:
①求出点A,B,C的坐标.
②在过A,B,C三点的抛物线上是否存在点M,使△MBP的面积是菱形ABCP面积的$\frac{1}{2}$?若存在,试求出所有满足条件的M点的坐标;若不存在,试说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.如图,四棱锥P-ABCD中,底面四边形ABCD是正方形,侧面PDC是边长为a的正三角形,且平面PDC⊥底面ABCD,E为PC的中点.
(1)求异面直线PA与DE所成的角的余弦值;
(2)求点D到面PAB的距离.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.已知集合A={x|2x>1},B={ x|x<1},则A∩B?(  )
A.{ x|0<x<1}B.{ x|x>?0}C.{ x|x>1}D.{x|x<1}

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.一几何体的三视图如图所示,则该几何体的各个面中面积最大的面的面积为(  )
A.4B.5C.$\frac{9}{2}$D.6

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.若集合A={x|$\sqrt{x}$>2},B={x|1<x<5},则A∩B等于(  )
A.(1,4)B.(4,5)C.(1,5)D.(5,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.有一块多边形的菜地,它的水平放置的平面图形的斜二测直观图是直角梯形(如图)∠ABC=45°,AB=$\sqrt{2}$,AD=1,DC⊥BC,则这块菜地的面积为$3\sqrt{2}$.

查看答案和解析>>

同步练习册答案