精英家教网 > 高中数学 > 题目详情
13.命题“若x>2,则x>1”的否命题是(  )
A.若x<2,则x<1B.若x≤2,则x≤1C.若x≤1,则x≤2D.若x<1,则x<2

分析 根据已知中的原命题,结合四种命题的定义,可得答案.

解答 解:命题“若x>2,则x>1”的否命题是“若x≤2,则x≤1”,
故选:B.

点评 本题考查的知识点是四种命题,难度不大,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

3.已知直线l:x-$\sqrt{3}$y+3=0与椭圆C:$\frac{{x}^{2}}{4}$+$\frac{{y}^{2}}{3}$=1交于A,B两点,过A,B分别作l的垂线与x轴交于C,D两点,则|CD|=(  )
A.$\sqrt{3}$B.$\frac{16}{13}$C.$\frac{32}{13}$D.$\frac{30}{13}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.设正实数x,y满足log${\;}_{\frac{1}{2}}$x+log2y=m(m∈[-1,1]),若不等式(x+y)2≤2ax2+(a+1)y2有解,则实数a的取值范围是(  )
A.a≥1B.a≥$\frac{8}{9}$C.a≥$\frac{7}{8}$D.a≥$\frac{5}{6}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.如图:在斜三棱柱ABC-A1B1C1中,四边形ABB1A1是菱形,四边形CBB1C1是矩形,AC=5,CB=3,AB=4,∠A1AB=60°.
(1)求证:平面CA1B⊥平面ABB1A1
(2)求直线A1C与平面ABC所成角的正切值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.圆C1:x2+y2+2x+8y-8=0和圆C2:x2+y2-4x-5=0的位置关系为相交.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.给出下列四个命题:
①函数y=sin(2x-$\frac{π}{3}$)的图象可以由y=sin2x的图象向右平移$\frac{π}{2}$个单位长度得到;
②已知函数f(x)=(a2-a-1)x${\;}^{\frac{1}{a-2}}$为幂函数,则a=-1;
③若扇形圆心角的弧度数为2,且扇形弧所对的弦长也是2,则这个扇形的面积为$\frac{1}{si{n}^{2}1}$;
④设函数f(x)=lg|x|-sinx的零点个数为n,则n=6.
则其中所有正确命题的序号是②③④.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.函数f(x)的定义域为D,若对于任意x1,x2∈D,当x1<x2时都有f(x1)≤f(x2),则称函数f(x)在D上为非减函数,设f(x)在[0,1]为非减函数,且满足以下三个条件;①f(0)=0;②f($\frac{x}{3}$)=$\frac{1}{2}$f(x);③f(1-x)=1-f(x),则f($\frac{1}{3}$)+f($\frac{1}{8}$)等于(  )
A.$\frac{1}{128}$B.$\frac{1}{256}$C.$\frac{1}{512}$D.$\frac{3}{4}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.已知变量x,y成负相关,且由观测数据算得样本平均数$\overline x=3$,$\overline y=3.5$,则由该观测数据算得的线性回归方程可能是(  )
A.y=0.4x+2.3B.y=2x+2.4C.y=-2x+9.5D.y=-0.4x+4.4

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.设函数f(x)=ex(sinx-cosx)(0≤x≤4π),则函数f(x)的所有极大值之和为(  )
A.eB.eπ+eC.eπ-eD.eπ+e

查看答案和解析>>

同步练习册答案