分析 (Ⅰ)设D(m,n),则由四边形ABCD为平行四边形,可得(6-3,-3+4)=(2-m,-6-n),求出m,n,可得D点坐标;
(Ⅱ)利用$\overrightarrow{OA}=x\overrightarrow{OB}+y\overrightarrow{OC}$,可得(3,-4)=x(6,-3)+y(2,-6),所以$\left\{\begin{array}{l}{6x+2y=3}\\{-3x-6y=-4}\end{array}\right.$,求出x,y,即可求实数$\frac{y}{x}$的值.
解答 解:(Ⅰ)设D(m,n),则由四边形ABCD为平行四边形,可得(6-3,-3+4)=(2-m,-6-n),
所以2-m=3,-6-n=1,所以m=-1,n=-7,
所以D(-1,-7);
(Ⅱ)因为$\overrightarrow{OA}=x\overrightarrow{OB}+y\overrightarrow{OC}$,
所以(3,-4)=x(6,-3)+y(2,-6),
所以$\left\{\begin{array}{l}{6x+2y=3}\\{-3x-6y=-4}\end{array}\right.$,
所以x=$\frac{1}{3}$,y=$\frac{1}{2}$,
所以$\frac{y}{x}$=$\frac{3}{2}$.
点评 本题考查向量的线性运算,考查平面向量基本定理,考查学生分析解决问题的能力,属于中档题.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | (4$\sqrt{3}$,$\frac{π}{6}$) | B. | (4$\sqrt{3}$,$\frac{π}{3}$) | C. | (4$\sqrt{3}$,$\frac{11π}{6}$) | D. | (4$\sqrt{3}$,-$\frac{π}{6}$) |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | (-∞,-$\frac{3}{5}$) | B. | ($\frac{1}{4}$,$\frac{3}{5}$) | C. | ($\frac{1}{4}$,+∞) | D. | ($\frac{3}{5}$,+∞) |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 0.90 | B. | 0.78 | C. | 0.60 | D. | 0.40 |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com