精英家教网 > 高中数学 > 题目详情

(09年宣武区二模文)(13分)

如图,在棱长为1的正方体ABCD―A1B1C1D1中,点E是棱BC的中点,点F是棱CD的中点。

   (1)求证:D1E⊥平面AB1F;

   (2)求二面角C1―EF―A的余弦值。

解析:解法1:(1)连结A1B,则D1E在侧面ABB1A1上的射影是A1B,

又∵A1B⊥AB1

∴D1E⊥AB1

连结DE,

∵D1E在底面ABCD上的射影是DE,E、F均为中点,

∴DE⊥AF,

∴D1E⊥AF

∵AB1∩AF=A

∴D1E⊥平面AB1F   …………………6分

   (2)∵C1C⊥平面EFA,连结AC交EF于H,

则AH⊥EF,

连结C1H,则C1H在底面ABCD上的射影是CH,

∴C1H⊥EF,

∴∠C1HA为二在角C1―EF―A的平面角,它是∠C1HC的邻补角。

解法2:(1)以A为坐标原点,建立如图所示的空间直角坐标系。

   (2)由已知得为平面EFA的一个法向量,

∵二面角C1―EF―A的平面角为钝角,

∴二面角C1―EF―A的余弦值为   ………………13分
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(09年宣武区二模文)(14分)

已知

   (1)当的零点;

   (2)求函数在区间[1,2]上的最小值。

查看答案和解析>>

科目:高中数学 来源: 题型:

(09年宣武区二模文)(13分)

甲、乙、丙三人参加一家公司的招聘面试,面试合格者可正式签约。甲表示只要面试合格就签约,乙、丙则约定:两人面试都合格就一同签约,否则两人都不签约。设每人合格的概率都是,且面试是否合格互不影响。求:

   (I)至少有一人面试合格的概率;

   (II)没有人签约的概率。

查看答案和解析>>

科目:高中数学 来源: 题型:

(09年宣武区二模文)(13分)

已知向量

   (1)求的值;

   (2)写出上的单调递增区间。

查看答案和解析>>

科目:高中数学 来源: 题型:

(09年宣武区二模文)已知:=        

查看答案和解析>>

同步练习册答案