精英家教网 > 高中数学 > 题目详情
6.已知函数$f(x)={log_{\frac{1}{2}}}\frac{1+x}{x-1}$.
(I)若a>b>1,试比较f(a)与f(b)的大小;
(Ⅱ)若函数g(x)=f(x)-($\frac{1}{2}$)x+m,且g(x)在区间[3,4]上没有零点,求实数m的取值范围.

分析 (1)先确定函数的定义域,再判断函数的单调性,最后根据单调性比较函数值的大小;
(2)先确定函数g(x)的单调性,再结合图象,将问题等价为g(x)min>0或g(x)max<0,最后解不等式.

解答 解:(1)函数$f(x)={log_{\frac{1}{2}}}\frac{1+x}{x-1}$的定义域为(-∞,-1)∪(1,+∞),
再判断函数的单调性,∵f(x)=$lo{g}_{\frac{1}{2}}$$\frac{x+1}{x-1}$=$lo{g}_{\frac{1}{2}}$[1+$\frac{2}{x-1}$],
因为函数u(x)=$\frac{2}{x-1}$在区间(-∞,-1)和(1,+∞)都是减函数,
所以,f(x)在区间(-∞,-1)和(1,+∞)都是增函数,
∵a>b>1,根据f(x)在(1,+∞)上是增函数得,
∴f(a)>f(b);
(2)由(1)知,f(x)在区间(1,+∞)上单调递增,
所以,函数g(x)=f(x)-$(\frac{1}{2})^{x}$+m在[3,4]单调递增,
∵g(x)在区间[3,4]上没有零点,
∴g(x)min>0或g(x)max<0,
而g(x)min=g(3)=-$\frac{9}{8}$+m>0,解得m>$\frac{9}{8}$,
g(x)max=g(4)=$lo{g}_{\frac{1}{2}}\frac{5}{3}$-$\frac{1}{16}$+m<0,解得m<$\frac{1}{16}$-$lo{g}_{\frac{1}{2}}\frac{5}{3}$,
因此,实数m的取值范围为(-∞,$\frac{1}{16}$-$lo{g}_{\frac{1}{2}}\frac{5}{3}$)∪($\frac{9}{8}$,+∞).

点评 本题主要考查了对数型复合函数的单调性的应用,以及函数零点的判定,体现了数形结合的解题思想,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

16.已知函数y=loga(x+4)-1(a>0,且a≠1)的图象恒过定点A,若点A在直线mx+ny+1=0上,其中m>0,n>0,则$\frac{1}{m}+\frac{3}{n}$的最小值为12.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.已知等差数列{an}中,a1=1,d=3,当an=19时,则n=(  )
A.5B.6C.7D.8

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.Sn为数列{an}的前n项和,Sn=n2+n
(Ⅰ)求数列{an}的通项公式
(Ⅱ)求证:数列{an}是等差数列
(Ⅲ)设数列{bn}是首项为1,公比为$\frac{1}{2}$的等比数列,求数列{an•bn}的前n项和Tn

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.在R上定义运算?:x?y=x(1-y),要使不等式(x-a)?(x+a)>1成立,则实数a的取值范围是(  )
A.-1<a<1B.0<a<2C.$a<-\frac{1}{2}$或$a>\frac{3}{2}$D.$-\frac{1}{2}<a<\frac{3}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.关于x的一元二次方程x2+(m-1)x+1=0在区间[0,2]上恰有唯一根,则实数m的取值范围是(-∞,-$\frac{3}{2}$]∪{-1}.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.函数f(x)=$\frac{{e}^{2x}}{a}$+2x在点(0,f(0))处的切线过点(1,1),则实数a=(  )
A.-2B.2C.-3D.3

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.设命题p:函数f(x)=ln$\frac{a+x}{1-x}$是奇函数,命题q:集合A={x||x|≤1,x∈R},B={x||x+2a|≥a,a>0}满足A⊆B,如果p和q有且仅有一个正确,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.已知函数y=a-bcosx(b>0)的最大值为$\frac{3}{2}$,最小值为-$\frac{1}{2}$,求函数y=-2asinbx的最大值和最小值.

查看答案和解析>>

同步练习册答案