精英家教网 > 高中数学 > 题目详情
(2012•宜宾一模)已知定义在(0,+∞)上的两个函数f(x)=x2-alnx,g(x)=x-a
x
,且f(x)在x=1
处取得极值.
(1)求a的值及函数g(x)的单调区间;
(2)求证:当1<x<e2时,恒有x<
2+lnx
2-lnx
成立.
(3)把g(x)对应的曲线向上平移6个单位后得曲线C1,求C1与f(x)对应曲线C2的交点个数,并说明理由.
分析:(1)先根据f'(1)=0求出a的值,然后求出g′(x),最后解g′(x)>0与g′(x)<0,即可求出函数g(x)的单调区间;
(2)先判定2-lnx的符号,欲证x<
2+lnx
2-lnx
,只需证明2x-xlnx<2+lnx,即只需证lnx>
2(x-1)
x+1
,记F(x)=lnx-
2(x-1)
x+1
,然后利用导数研究函数的单调性求出函数F(x)的最小值即可证得结论;
(3)由题意知C1:h(x)=x-2
x
+6
,问题转化为G(x)=x2-2lnx-(x-2
x
+6)=0
在(0,+∞)上解的个数,然后利用导数研究函数的单调性,从而可判定解的个数.
解答:解:(1)∵f′(x)=2x-
a
x
,∴f'(1)=2-a=0,∴a=2.…(2分)
g(x)=x-2
x
.由g′(x)=1-
1
x
>0
,得x>1;
g′(x)=1-
1
x
<0
,得0<x<1.
∴g(x)的单调递减区间是(0,1),单调递增区间是(1,+∞).…(4分)
(2)∵1<x<e2
∴0<lnx<2,
∴2-lnx>0.
欲证x<
2+lnx
2-lnx
,只需证明2x-xlnx<2+lnx,
即只需证lnx>
2(x-1)
x+1

F(x)=lnx-
2(x-1)
x+1

F′(x)=
(x-1)2
x(x+1)2

当x>1时,F'(x)>0,
∴F(x)在(1,+∞)上是增函数.
∴F(x)>F(1)=0,
∴F(x)>0,即lnx-
2(x-1)
x+1
>0

lnx>
2(x-1)
x+1
.故结论成立.  …(8分)
(3)由题意知C1:h(x)=x-2
x
+6

问题转化为G(x)=x2-2lnx-(x-2
x
+6)=0
在(0,+∞)上解的个数.…(10分)
G(x)=2x-2
1
x
-1+
1
x
=
2x2-2-x+
x
x
=
(
x
-1)(2x
x
+2x+
x
+2)
x

由G'(x)>0,得x>1;由G'(x)<0,得0<x<1.
∴G(x)在区间(1,+∞)上单调递增,在区间(0,1)上单调递减.
又G(1)=-4<0,所以G(x)=x2-2lnx-(x-2
x
+6)=0

在(0,+∞)上有2个解.
即C1与f(x)对应曲线C2的交点个数是2.…(14分)
点评:本题主要考查了利用导数研究函数的极值,以及函数的单调性和图象交点问题,同时考查了转化的思想,属于中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(2012•宜宾一模)平面α外有两条直线m和n,如果m和n在平面α内的射影分别是m1和n1,给出下列四个命题:
①m1⊥n1⇒m⊥n;
②m⊥n⇒m1⊥n1
③m1与n1相交⇒m与n相交或重合
④m1与n1平行⇒m与n平行或重合
其中不正确的命题个数是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•宜宾一模)已知向量
a
=(2,l),
a
b
=10,|
a
+
b
|=5
2
,则|
b
|=
5
5

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•宜宾一模)已知向量
a
=(1,2)
,向量
b
=(x,-2)
,且
a
⊥(
a
-
b
)
,则实数x等于
9
9

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•宜宾一模)《中华人民共和国道路交通安全法》
规定:车辆驾驶员血液酒精浓度在20~80mg/100mL(不含80)之间,属于酒后驾车;血液酒精浓度在80mg/100mL(含80)以上时,属醉酒驾车.
据有关调查,在一周内,某地区查处酒后驾车和醉酒驾车共500人.如图是对这500人血液中酒精含量进行检测所得结果的频率分布直方图,则属于醉酒驾车的人数约为
75
75

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•宜宾一模)若a>b,则下列不等式正确的是(  )

查看答案和解析>>

同步练习册答案