精英家教网 > 高中数学 > 题目详情
在△ABC中,三边AB=8,BC=7,AC=3,以点A为圆心,r=2为半径作一个圆,设PQ为圆A的任意一条直径,记T=
BP
CQ
,则T的最大值为______.
T=
BP
CQ
AP
CB

=(
BA
+
AP
)•(
CA
+
AQ
)

=(
BA
+
AP
)•(
CA
-
AP
)

=
BA
CA
+
AP
•(
CA
-
BA
)-
AP
2

=8+
AP
•(
CA
-
BA
)

=8+
AP
CB

|
AP
|=2,|
BC
|=7

故T的最大值为22
故答案为:22
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

在△ABC中,三边a、b、c与面积S的关系是S=
1
4
(a2+b2-c2),则角C应为(  )
A、30°B、45°
C、60°D、90°

查看答案和解析>>

科目:高中数学 来源: 题型:

在△ABC中,三边a、b、c所对的角分别为A、B、C,已知a=2
3
,b=2,△ABC的面积S=
3
,则C=
π
6
6
π
6
6

查看答案和解析>>

科目:高中数学 来源: 题型:

在△ABC中,三边a,c,b成等差,则sinA的范围是
[
3
2
,1
[
3
2
,1

查看答案和解析>>

科目:高中数学 来源: 题型:

在△ABC中,三边a、b、c与面积S的关系式为S=
1
4
(a2+b2-c2),则角C=
π
4
π
4

查看答案和解析>>

科目:高中数学 来源: 题型:

在△ABC中,三边a,b,c成等差数列,B=30°,三角形ABC的面积为
1
2
,则b的值是(  )

查看答案和解析>>

同步练习册答案