精英家教网 > 高中数学 > 题目详情
精英家教网在四棱锥V-ABCD中,底面ABCD是正方形,侧面VAD是正三角形,平面VAD⊥底面ABCD.
1)求证AB⊥面VAD;
2)求面VAD与面VDB所成的二面角的大小.
分析:(1)欲证AB⊥面VAD,根据直线与平面垂直的判定定理可知只需证AB与面VAD内两相交直线垂直,而VE⊥AB可由面VAD⊥底面ABCD得到,AB⊥AD,满足定理条件;
(2)设VD的中点为F,连AF,AF⊥VD,由三垂线定理知BF⊥VD,根据二面角平面角的定义可知∠AFB是面VAD与面VDB所成的二面角的平面角,在Rt△ABF中求出此角即可.
解答:精英家教网证明:(1)由于面VAD是正三角形,设AD的中点为E,
则VE⊥AD,而面VAD⊥底面ABCD,则VE⊥AB.
又面ABCD是正方形,则AB⊥AD,故AB⊥面VAD.
(2)由AB⊥面VAD,则点B在平面VAD内的射影是A,设VD的中点为F,连AF,BF由△VAD是正△,则AF⊥VD,由三垂线定理知BF⊥VD,故∠AFB是面VAD与面VDB所成的二面角的平面角.
设正方形ABCD的边长为a,
则在Rt△ABF中,AB=a,AF=
3
2
a,tan∠AFB=
AB
AF
=
a
3
2
a
=
2
3
3

故面VAD与面VDB所成的二面角的大小为arctan
2
3
3
点评:本题主要考查了直线与平面垂直的判定,以及二面角及其度量,对于二面角的度量在高考中有所弱化,属于基础题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

精英家教网如图,在四棱锥V-ABCD中底面ABCD是正方形,侧面VAD是正三角形,平面VAD⊥底面ABCD
(1)证明:AB⊥平面VAD;         
(2)求面VAD与面VDB所成的二面角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

精英家教网如图,在四棱锥V-ABCD中,底面ABCD是矩形,侧棱VA⊥底面ABCD,E、F、G分别为VA、VB、BC的中点.
(I)求证:平面EFG∥平面VCD;
(II)当二面角V-BC-A、V-DC-A分别为45°、30°时,求直线VB与平面EFG所成的角.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图:在四棱锥V-ABCD中,底面ABCD是边长为2的正方形,其它四个侧面都是侧棱长为
5
的等腰三角形.
(1)求二面角V-AB-C的平面角的大小;
(2)求四棱锥V-ABCD的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:

在四棱锥V-ABCD中,底面ABCD是正方形,侧面VAD是正三角形,平面VAD⊥底面ABCD.
(Ⅰ)如果P为线段VC的中点,求证:VA∥平面PBD;
(Ⅱ)如果正方形ABCD的边长为2,求三棱锥A-VBD的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2010•唐山三模)如图,在四棱锥V-ABCD中,底面ABCD是边长为2
3
的菱形,∠BAD=60°,侧面VAD⊥底面ABCD,VA=VD,E为AD的中点.
(Ⅰ)求证:平面VBE⊥平面VBC;
(Ⅱ)当直线VB与平面ABCD所成的角为30°时,求面VBE与面VCD所成锐二面角的大小.

查看答案和解析>>

同步练习册答案