精英家教网 > 高中数学 > 题目详情
16.“直线l垂直于平面α内两直线a,b”是“直线l⊥平面α”的(  )
A.充分不必要条件B.必要不充分条件
C.充要条件D.既不充分也不必要条件

分析 根据充分条件和必要条件的定义结合线面垂直的定义和性质进行判断即可.

解答 解:若a,b不相交,则当直线l垂直于平面α内两直线a,b时,直线l⊥α不成立,
若直线l⊥α,则直线l垂直于平面a内两直线a,b成立,
故“直线l垂直于平面α内两直线a,b”是“直线l⊥平面α”的必要不充分条件,
故选:B

点评 本题主要考查充分条件和必要条件的判断,根据线面垂直的定义是解决本题的关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

6.为了了解某市高三学生的身体发育情况,抽测了该市50名高三男生的体重(kg),数据得到的频率分布直方图如图.根据右图可知这50名男生中体重在[56.5,60.5]的人数是8.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.已知x、y满足$\left\{\begin{array}{l}{x≤2}\\{y≤2}\\{x+y≥2}\end{array}\right.$,则z=x+2y的最大值为6.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.如图所示,x1,x2,x3为某次考试三个评阅人对同一道题的独立评分,p为该题的最终得分,当x1=6,x2=9,p=10时,x3=(  )
A.8B.9C.10D.11

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.已知函数f(x)=Asin($\frac{π}{3}x$+φ),(A>0,0<φ<$\frac{π}{2}$),y=f(x)的部分图象如图所示,P,Q分别为该图象上相邻的最高点和最低点,点P在x轴上的射影为R(1,0),cos∠PRQ=-$\frac{4}{5}$.
(1)求A,φ的值;
(2)将函数f(x)的图象上所有点向右平移θ(θ>0)个单位,得到函数g(x)的图象,若g(x)在区间[0,3]上单调递增,求θ的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.已知函数f(x)=a3lnx+$\frac{1}{2}$x2-(a+a2)x(a∈R),g(x)=3x2lnx-2x2-x.
(Ⅰ)求证:g(x)在区间[2,4]上单调递增;
(Ⅱ)若a≥2,函数f(x)在区间[2,4]上的最大值为G(a),求G(a)的解析式,并判断G(a)是否有最大值和最小值,请说明理由(参考数据:0.69<ln2<0.7).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.电视传媒公司为了了解某地区电视观众对某类体育节目的收视情况,随机抽取了100名观众进行调查,其中女性有55名.下面是根据调查结果绘制的观众日均收看该体育节目时间的频率分布直方图; 
将日均收看该体育节目时间不低于40分钟的观众称为“体育迷”,已知“体育迷”中有10名女性.
(Ⅰ)根据已知条件完成下面的2×2列联表
非体育迷体育迷合计
合计
(Ⅱ)将日均收看该体育项目不低于50分钟的观众称为“超级体育迷”,已知“超级体育迷”中有2名女性,若从“超级体育迷”中任意选取2人,求至少有1名女性观众的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.已知函数f(x)=x3-3ax-1(a∈R)
(1)试讨论函数f(x)的单调区间;
(2)若f(x)=0在x∈[0,1]上恒成立,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.已知f(α)=$\frac{{cos({3π+α})cos({\frac{3π}{2}+α})sin({-α})}}{{tan({-π-α})sin({3π-α})cos({-π-α})}}$.
(1)化简f(α);
(2)已知角α为锐角,$f({α+\frac{π}{6}})=\frac{3}{5}$,求f(α)的值.

查看答案和解析>>

同步练习册答案