精英家教网 > 高中数学 > 题目详情

若不等式对于任意实数恒成立,则实数的取值范围是________.

 

【答案】

【解析】略

 

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知函数f(x)=ln(2+3x)-
3
2
x2
(1)求f(x)在[0,1]上的极值;
(2)若对于任意x∈[
1
3
,1]不等式|a-f(x)|>ln5恒成立,求实数a的取值范围;
(3)若关于x的方程f(x)=-2x+b在[0.1]上恰有两个不同的实根,求实数b的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

下列命题中:
(1)方程x2+(a-3)x+a=0有一个正实根,一个负实根,则a<0;
(2)函数f(x)=lg(mx2+mx+1)的定义域为R,则m的取值范围是m∈(0,4);
(3)若函数y=
x2+ax+2
在区间(-∞,1]上是减函数,则实数a∈[-3,-2];
(4)若函数f(3x+1)是偶函数,则f(x)的图象关于直线x=
1
3
对称.
(5)若对于任意x∈(1,3)不等式x2-ax+2<0恒成立,则a>
11
3

其中的真命题是
(1),(3),(5)
(1),(3),(5)
(写出所有真命题的编号).

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)是定义在R上的奇函数,若对于任意给定的不等实x1、x2,不等式(x1-x2)[f(x1)-f(x2)]<0恒成立,则不等式f(1-x)<0的解集为(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

已知向量
p
=(a-3,x),
q
=(x+a,x),f(x)=
p
q
,且m,n是方程f(x)=0的两个实根,
(1)设g(a)=m3+n3+a3,求g(a)的最小值;
(2)若不等式lnx-
b
x
x2
在x∈[1,+∞)上恒成立,求实数b的取值范围;
(3)对于(1)中的函数y=g(a),给定函数h(x)=c(xlnx-x3),(c<0),若对任意的x0∈[2,3],总存在x1∈[1,2],使得g(x0)=h(x1),求实数c的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知在区间上是增函数.

(1)求实数的取值范围;

(2)记(1)中实数的范围为集合A,且设关于的方程的两个非零实根为.

①求的最大值;

②试问:是否存在实数m,使得不等式对于任意恒成立?若存在,求m的取值范围;若不存在,请说明理由.

查看答案和解析>>

同步练习册答案