精英家教网 > 高中数学 > 题目详情

如图,在长方体ABCD-A1B1C1D1中,AA1=AD=1,E为CD中点.
(1)求证:B1E⊥AD1
(2)若AB=2,求二面角A-B1E-A1的大小.

(1)证明:因为AA1D1D为正方形,所以A1D⊥AD1

又B1E?面A1B1CD?AD1⊥B1E.
(2)解:如图建立空间直角坐标系,则A(0,0,0),B1(2,0,1),E(1,1,0),
所以
=(x,y,z)为面AB1E的一个法向量,则,即
取面AB1E的一个法向量为
同理可取面A1B1E一个法向量为
设二面角A-B1E-A1为α,则
,即二面角A-B1E-A1的大小为
分析:(1)要证B1E⊥AD1,可证AD1⊥面A1B1CD,利用线面垂直的判定定理即可证明;
(2)建立空间直角坐标系,求出两半平面的法向量,转化为法向量的夹角解决;
点评:本题考查二面角的求法及线面垂直的判定,常用方法:(1)判定定理;(2)向量法;使用向量时注意向量夹角与所求角之间的关系.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

如图在长方体ABCD-A1B1C1D1中,三棱锥A1-ABC的面是直角三角形的个数为:
4
4

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,定义八个顶点都在某圆柱的底面圆周上的长方体叫做圆柱的内接长方体,圆柱也叫长方体的外接圆柱.设长方体ABCD-A1B1C1D1的长、宽、高分别为a,b,c(其中a>b>c),那么该长方体的外接圆柱侧面积的最大值等于(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

若一个n面体中有m个面是直角三角形,则称这个n面体的直度为.如图,在长方体ABCD-A1B1C1D1中,四面体A1-ABC的直度为(    )

 

A.         B.               C.                 D.1

查看答案和解析>>

科目:高中数学 来源: 题型:

若一个n面体中有m个面是直角三角形,则称这个n面体的直度为.如图,在长方体ABCD-A1B1C1D1中,四面体A1-ABC的直度为(    )

 

A.            B.              C.              D.1

查看答案和解析>>

科目:高中数学 来源:2010-2011年四川省成都市高二3月月考数学试卷 题型:填空题

(文科做)(本题满分14分)如图,在长方体

ABCDA1B1C1D1中,AD=AA1=1,AB=2,点E在棱AB上移动.

(1)证明:D1EA1D;

(2)当EAB的中点时,求点E到面ACD1的距离;

(3)AE等于何值时,二面角D1ECD的大小为.                      

 

 

 

(理科做)(本题满分14分)

     如图,在直三棱柱ABCA1B1C1中,∠ACB = 90°,CB = 1,

CA =AA1 =M为侧棱CC1上一点,AMBA1

   (Ⅰ)求证:AM⊥平面A1BC

   (Ⅱ)求二面角BAMC的大小;

   (Ⅲ)求点C到平面ABM的距离.

 

 

 

 

 

查看答案和解析>>

同步练习册答案