精英家教网 > 高中数学 > 题目详情
已知定点F(1,0),动点P(异于原点)在y轴上运动,连接FP,过点P作PM交x轴于点M,并延长MP到点N,且
PM
PF
=0
|
PN
|=|
PM
|

(1)求动点N的轨迹C的方程;
(2)若直线l与动点N的轨迹交于A、B两点,若
OA
OB
=-4
4
6
≤|AB|≤4
30
,求直线l的斜率k的取值范围.
(1)设动点N(x,y),则M(-x,0),P(0,
y
2
)(x>0),
∵PM⊥PF,∴kPMkPF=-1,即
y
2
x
y
2
-1
=-1

∴y2=4x(x>0)即为所求.
(2)设直线l方程为y=kx+b,l与抛物线交于点A(x1,y1)、B(x2,y2),
则由
OA
OB
=-4
,得x1x2+y1y2=-4,即
y12y22
16
+y1y2=-4,∴y1y2=-8,
y2=4x
y=kx+b
可得ky2-4y+4b=0(其中k≠0),∴y1y2=
4b
k
=-8,b=-2k,
当△=16-16kb=16(1+2k2)>0时,|AB|2=(1+
1
k2
(y2-y1)2=
1+k2
k2
•[(y2+y1)2-4y1•y2]=
1+k2
k2
16
k2
+32).
由题意,得16×6≤
1+k2
k2
•≤16×30,解得
1
4
≤k
2
≤1

1
2
≤k≤1,或-1≤k≤-
1
2

即所求k的取值范围是[-1,-
1
2
]∪[
1
2
1].
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

已知向量
a
=(-3,0),
b
=(2,0)

(1)若向量
c
=(0,1)
,求向量
a
-
c
b
-
c
的夹角;
(2)若向量
c
满足|
c
|=1,求向量
a
-
c
b
-
c
的夹角最小值的余弦值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知空间四边形OABC中,OA=OB,CA=CB,E、F、G、H分别为OA、OB、BC、CA的中点,求证:四边形EFGH是矩形.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知向量
OA
=(-3,1)
OB
=(1,3)
,在直线y=x+4上是否存在点P,使得
PA
PB
=0
?若存在,求出点P的坐标;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

下列式子正确的是(  )
A.(
a
b
2=
a
2
b
2
B.|
a
b
|≤|
a
|•|
b
|
C.
a
|
a
|=
a
2
D.
a
a
b
)=(
a
a
b

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

在平行四边形ABCD中,AD=1,AB=2,∠BAD=60°,E是CD的中点,则
.
AC
.
BE
=______.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

在△ABC中,满足
AB
AC
的夹角为60°,M是AB的中点,
(1)若|
AB
|=|
AC
|
,求向量
AB
+2
AC
AB
的夹角的余弦值;.
(2)若|
AB
|=2,|
BC
|=2
3
,点D在边AC上,且
AD
AC
,如果
MD
AC
=0
,求λ的值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

已知向量
a
=(sin2x,-1),
b
=(1,cos2x)
,则当x∈[0,
π
2
]
时,
a
b
的取值范围是______.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

在边长为1的等边中,设(    )
A.B.C.D.

查看答案和解析>>

同步练习册答案