14£®ÒÑÖªÊýÁÐ{an}Âú×㣺a1=$\frac{1}{2}$£¬$\frac{3£¨1+{a}_{n+1}£©}{1-{a}_{n}}$=$\frac{2£¨1+{a}_{n}£©}{1-{a}_{n+1}}$£¬anan+1£¼0£¨n¡ÊN*£©£»ÊýÁÐ{bn}Âú×㣺bn=a2n+1-a2n£¨n¡ÊN*£©£®£¨1£©ÇóÊýÁÐ{an}£¬{bn}µÄͨÏʽ£»
£¨2£©ÇóÊýÁÐ{4£¨n+1£©bn}µÄǰnÏîºÍTn£»
£¨3£©ÊýÁÐ{bn}ÖÐÊÇ·ñ´æÔÚ²»Í¬µÄÈýÏî³ÉµÈ²îÊýÁУ¿Èô´æÔÚ£¬Çó³öÕâÈýÏÈô²»´æÔÚ£¬ËµÃ÷ÀíÓÉ£®

·ÖÎö £¨1£©ÓÉÒÑÖªÍÆµ¼³ö{1-${{a}_{n}}^{2}$}ÊÇÊ×ÏîΪ$\frac{3}{4}$£¬¹«±ÈΪ$\frac{2}{3}$£¬ÓÉ´ËÄÜÇó³öÊýÁÐ{an}£¬{bn}µÄͨÏʽ£®
£¨2£©ÓÉ4£¨n+1£©bn=4£¨n+1£©•$\frac{3}{8}•£¨\frac{3}{2}£©^{n}$=£¨n+1£©£¨$\frac{3}{2}$£©n+1£¬ÀûÓôíλÏà¼õ·¨ÄÜÇó³öÊýÁÐ{4£¨n+1£©bn}µÄǰnÏîºÍ£®
£¨3£©¼ÙÉèÊýÁÐ{bn}ÖдæÔÚ²»Í¬µÄÈýÏîbm£¬bn£¬bq³ÉµÈ²îÊýÁУ¬ÍƵ¼³ö2£¨$\frac{3}{2}$£©n=£¨$\frac{3}{2}$£©m+£¨$\frac{3}{2}$£©q£®ÓÉm£¬n£¬q¡ÊN*£¬ÇÒm£¬n£¬q»¥²»ÏàÏàµÈ£¬µÃÂú×ãÌõ¼þµÄm£¬n£¬q²»´æÔÚ£¬´Ó¶øÊýÁÐ{bn}Öв»´æÔÚ²»Í¬µÄÈýÏî³ÉµÈ²îÊýÁУ®

½â´ð ½â£º£¨1£©¡ßÊýÁÐ{an}Âú×㣺a1=$\frac{1}{2}$£¬$\frac{3£¨1+{a}_{n+1}£©}{1-{a}_{n}}$=$\frac{2£¨1+{a}_{n}£©}{1-{a}_{n+1}}$£¬anan+1£¼0£¨n¡ÊN*£©£¬
¡à3£¨$1-{{a}_{n+1}}^{2}$£©=2£¨1-${{a}_{n}}^{2}$£©£¬
¡à$\frac{1-{{a}_{n+1}}^{2}}{1-{{a}_{n}}^{2}}$=$\frac{2}{3}$£¬
ÓÖ${a}_{1}=\frac{1}{2}$£¬1-${{a}_{1}}^{2}$=1-$\frac{1}{4}$=$\frac{3}{4}$£¬
¡à{1-${{a}_{n}}^{2}$}ÊÇÊ×ÏîΪ$\frac{3}{4}$£¬¹«±ÈΪ$\frac{2}{3}$£¬
¡à$1-{{a}_{n}}^{2}$=£¨$\frac{3}{4}$£©•£¨$\frac{2}{3}$£©n-1£¬
¡à${{a}_{n}}^{2}$=1-£¨$\frac{3}{4}$£©•£¨$\frac{2}{3}$£©n-1£¬
¡à${a}_{n}=\sqrt{1-£¨\frac{3}{4}£©£¨\frac{2}{3}£©^{n-1}}$£®
bn=a2n+1-a2n£¨n¡ÊN*£©
=1-£¨$\frac{3}{4}$£©£¨$\frac{2}{3}$£©n-1+£¨$\frac{3}{4}$£©£¨$\frac{2}{3}$£©n-1
=$\frac{3}{4}$[£¨$\frac{2}{3}$£©n-1-£¨$\frac{2}{3}$£©n]
=$\frac{3}{8}$•£¨$\frac{3}{2}$£©n£®
£¨2£©¡ß4£¨n+1£©bn=4£¨n+1£©•$\frac{3}{8}•£¨\frac{3}{2}£©^{n}$=£¨n+1£©£¨$\frac{3}{2}$£©n+1£¬
¡àÊýÁÐ{4£¨n+1£©bn}µÄǰnÏîºÍ£º
Tn=2¡Á$£¨\frac{3}{2}£©^{2}$+3¡Á£¨$\frac{3}{2}$£©3+¡­+£¨n+1£©¡Á$£¨\frac{3}{2}£©^{n+1}$£¬¢Ù
$\frac{3}{2}{T}_{n}$=$2¡Á£¨\frac{3}{2}£©^{3}+3¡Á£¨\frac{3}{2}£©^{4}+¡­+£¨n+1£©¡Á£¨\frac{3}{2}£©^{n+2}$£¬¢Ú
¢Ù-¢Ú£¬µÃ£º
-$\frac{1}{2}{T}_{n}$=$\frac{9}{2}$+[£¨$\frac{3}{2}$£©3+£¨$\frac{3}{2}$£©4+¡­+£¨$\frac{3}{2}$£©n+1]-£¨n+1£©¡Á£¨$\frac{3}{2}$£©n+2
=$\frac{9}{2}$+$\frac{\frac{27}{8}[1-£¨\frac{3}{2}£©^{n-1}]}{1-\frac{3}{2}}$-£¨n+1£©¡Á$£¨\frac{3}{2}£©^{n+2}$
=$\frac{9}{2}$+$\frac{27}{4}$[-1+£¨$\frac{3}{2}$£©n-1]-£¨n+1£©¡Á£¨$\frac{3}{2}$£©n+2
=-$\frac{9}{4}$+£¨1-n£©¡Á£¨$\frac{3}{2}$£©n+2
¡àTn=$\frac{9}{2}$-2£¨n-1£©¡Á£¨$\frac{3}{2}$£©n+2£®
£¨3£©¼ÙÉèÊýÁÐ{bn}ÖдæÔÚ²»Í¬µÄÈýÏîbm£¬bn£¬bq³ÉµÈ²îÊýÁУ¬
Ôò2•$\frac{3}{8}$•£¨$\frac{3}{2}$£©n=$\frac{3}{8}$•£¨$\frac{3}{2}$£©m+$\frac{3}{8}$•£¨$\frac{3}{2}$£©q£®
¡à2£¨$\frac{3}{2}$£©n=£¨$\frac{3}{2}$£©m+£¨$\frac{3}{2}$£©q£®
½âµÃm=n=q=0»òm=n=q=1£¬
¡ßm£¬n£¬q¡ÊN*£¬ÇÒm£¬n£¬q»¥²»ÏàÏàµÈ£¬
¡àÂú×ãÌõ¼þµÄm£¬n£¬q²»´æÔÚ£¬
¡àÊýÁÐ{bn}Öв»´æÔÚ²»Í¬µÄÈýÏî³ÉµÈ²îÊýÁУ®

µãÆÀ ±¾Ì⿼²éÊýÁеÄͨÏʽµÄÇ󷨣¬¿¼²éÊýÁеÄǰnÏîºÍµÄÇ󷨣¬¿¼²éÊýÁÐÖÐÊÇ·ñ´æÔÚ²»Í¬µÄÈýÏî³ÉµÈ²îÊýÁеÄÅжϣ¬ÄѶȴó£¬×ÛºÏÐÔÇ¿£¬½âÌâʱҪעÒâ¹¹Ôì·¨ºÍ´íλÏà¼õ·¨µÄºÏÀíÔËÓã®

Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

4£®ÒÑÖªÊýÁÐ{an}µÄǰnÏîºÍSnÂú×ã2Sn=3an-1£¬ÆäÖÐn¡ÊN*£®
£¨1£©ÇóÊýÁÐ{an}µÄͨÏʽ£»
£¨2£©Éè${a_n}{b_n}=\frac{3^n}{{{n^2}+n}}$£¬ÊýÁÐ{bn}µÄǰnÏîºÍΪTn£¬Èô${T_n}£¼{c^2}-2c$¶Ôn¡ÊN*ºã³ÉÁ¢£¬ÇóʵÊýcµÄȡֵ·¶Î§£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

5£®ÇóÖµ£ºsin1¡ãsin3¡ãsin5¡ã¡­sin87¡ãsin89¡ã£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

2£®ÒÑÖªº¯Êýf£¨x£©=x2-1£®
£¨1£©¶ÔÓÚÈÎÒâµÄ1¡Üx¡Ü2£¬²»µÈʽ4m2|f£¨x£©|+4f£¨m£©¡Ü|f£¨x-1£©|ºã³ÉÁ¢£¬ÇóʵÊýmµÄȡֵ·¶Î§£»
£¨2£©Èô¶ÔÈÎÒâʵÊýx1¡Ê[1£¬2]£®´æÔÚʵÊýx2¡Ê[1£¬2]£¬Ê¹µÃf£¨x1£©=|2f£¨x2£©-ax2|³ÉÁ¢£¬ÇóʵÊýaµÄȡֵ·¶Î§£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

9£®ÒÑÖª¶þ´Îº¯Êýf£¨x£©=ax2+bx+cÂú×ãf£¨2x-1£©=4x2+6x-1£®
£¨1£©Çóf£¨x£©£»
£¨2£©µ±x¡Ê[-1£¬2]ʱ£¬Çóf£¨x£©µÄÖµÓò£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

19£®Ò»Ôª¶þ´Î·½³Ìx2+2ax-b+1=0ÓÐÁ½¸ö¸ù£¬Ò»¸ö¸ùÔÚÇø¼ä£¨0£¬1£©ÄÚ£¬ÁíÒ»¸ö¸ùÔÚÇø¼ä£¨1£¬2£©ÄÚ£®Ôòa2+b2-4a+2bµÄȡֵ·¶Î§ÊÇ£¨$\frac{24}{5}$£¬8£©£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

6£®ÔÚÖ±Ïßx+3y=0ÉÏÕÒÒ»µã£¬Ê¹Ëüµ½Ö±Ïßx+3y-3=0µÄ¾àÀëÓëµ½Ô­µãµÄ¾àÀëÏàµÈ£¬ÔòÕâ¸öµãµÄ×ø±êÊÇ£¨-$\frac{9}{10}$£¬$\frac{3}{10}$£©»ò£¨$\frac{9}{10}$£¬-$\frac{3}{10}$£©£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

3£®ÒÑÖª8sin¦Á+10cos¦Â=5£¬8cos¦Á+10sin¦Â=5$\sqrt{3}$£®ÇóÖ¤£ºsin£¨¦Á+¦Â£©=-sin£¨$\frac{¦Ð}{3}$+¦Á£©

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

4£®ÔÚ£¨x+y£©£¨x+1£©4µÄÕ¹¿ªÊ½ÖÐxµÄÆæÊý´ÎÃÝÏîµÄϵÊýÖ®ºÍΪ32£¬ÔòyµÄÖµÊÇ£¨¡¡¡¡£©
A£®1B£®2C£®3D£®4

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸