(本小题共14分)
为预防
病毒暴发,某生物技术公司研制出一种新流感疫苗,为测试该疫苗的有效性(若疫苗有效的概率小于90%,则认为测试没有通过),公司选定2000个流感样本分成三组,测试结果如下表:
| A组 | B组 | C组 | |
| 疫苗有效 | 673 |
|
|
| 疫苗无效 | 77 | 90 |
|
已知在全体样本中随机抽取1个,抽到B组疫苗有效的概率是0.33.
(1)求
的值;
(2)现用分层抽样的方法在全体样本中抽取360个测试结果,问应在C组抽取多少个?
(3)已知
,求不能通过测试的概率.
(本小题共14分)
解:(1)
在全体样本中随机抽取1个,抽到B组疫苗有效的概率约为其频率
即
…………………………(4分)
(2)C组样本个数为y+z=2000-(673+77+660+90)=500,
现用分层抽样的方法在全体样本中抽取360个测试结果,
则
………………………………(7分)
答:应在C组抽取个数为90.……………………………………………………8分
(3)设测试不能通过事件为A ,C组疫苗有效与无效的可能的情况记为(y,z) 由(2)知
,且
,基本事件空间包含的基本事件有:
(465,35)、(466,34)、(467,33)、……(475,25)共11个 …………… (11分)
若测试不能通过,则77+90+z>200,即z>33
事件A包含的基本事件有:((465,35)、(466,34)共2个
![]()
…………………(13分)
故不能通过测试的概率为
…………………(14分)
科目:高中数学 来源: 题型:
(本小题共14分)
如图,四棱锥
的底面是正方形,
,点E在棱PB上。
![]()
(Ⅰ)求证:平面
;
(Ⅱ)当
且E为PB的中点时,求AE与平面PDB所成的角的大小。
查看答案和解析>>
科目:高中数学 来源: 题型:
(2009北京理)(本小题共14分)
已知双曲线
的离心率为
,右准线方程为![]()
(Ⅰ)求双曲线
的方程;
(Ⅱ)设直线
是圆
上动点
处的切线,
与双曲线
交
于不同的两点
,证明
的大小为定值.
查看答案和解析>>
科目:高中数学 来源:2013届度广东省高二上学期11月月考理科数学试卷 题型:解答题
(本小题共14分)在四棱锥P-ABCD中,底面ABCD是正方形,侧棱PD
底面ABCD,PD=DC,点E是PC的中点,作EF
PB交PB于点F
⑴求证:PA//平面EDB
⑵求证:PB
平面EFD
⑶求二面角C-PB-D的大小
![]()
查看答案和解析>>
科目:高中数学 来源:2010年北京市崇文区高三下学期二模数学(文)试题 题型:解答题
(本小题共14分)
正方体
的棱长为
,
是
与
的交点,
为
的中点.
(Ⅰ)求证:直线
∥平面
;
(Ⅱ)求证:
平面
;
(Ⅲ)求三棱锥
的体积.
![]()
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com