精英家教网 > 高中数学 > 题目详情

定义新运算?:当a b时,a?ba;当a<b时,a?bb2,则f(x)=(1?x)x-(2?x),x∈[-2,2]的最小值等于        

 

【答案】

【解析】

试题分析:由题意知,当时,,当时,

在定义域上都为增函数,

所以的最小值为

考点:分段函数的解析式求法及其图象的作法;函数的最值及其几何意义.

点评:本题考查分段函数,以及函数的最值及其几何意义,考查函数单调性及导数求最值,是基础题.

 

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

16、在实数的原有运算中,我们补充定义新运算“⊕”如下:当a≥b时,a⊕b=a;当a<b时,a⊕b=b2.设函数f(x)=(1⊕x)x-(2⊕x),x∈[-2,2],则函数f(x)的值域为
[-4,6]

查看答案和解析>>

科目:高中数学 来源: 题型:

10、在实数的原有运算法则中,我们补充定义新运算“⊕”如下:当a≥b时,a⊕b=a;当a<b时,a⊕b=b2.则函数f(x)=(1⊕x)•x-(2⊕x)(x∈[-2,2])的最大值等于(“•”和“-”仍为通常的乘法和减法)(

查看答案和解析>>

科目:高中数学 来源: 题型:

在实数的原有运算法则下,我们定义新运算“⊕”为:当a≥b时,a⊕b=a;当a<b时,a⊕b=b2.则函数f(x)=(1⊕x)x-(2⊕x)(其中x∈[-2,2])的最大值等于(上式中“•”和“-”仍为通常的乘法和减法)(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

在实数运算中,定义新运算“⊕”如下:当a≥b时,a⊕b=a; 当a<b时,a⊕b=b2.则函数f(x)=(1⊕x)+(2⊕x)(其中x∈[-2,3])的最大值是(  )(“+”仍为通常的加法)

查看答案和解析>>

科目:高中数学 来源: 题型:

在实数的原有运算法则(“•”和“-”仍为通常的乘法和减法)中,我们补充定义新运算“⊕”如下:当a≥b时,a⊕b=a;当a<b时,a⊕b=b2.则当x∈[-2,2]时,函数f(x)=(1⊕x)•x-(2⊕x)的最大值等于(  )

查看答案和解析>>

同步练习册答案