【题目】已知函数f(x)=sin2wx﹣sin2(wx﹣
)(x∈R,w为常数且
<w<1),函数f(x)的图象关于直线x=π对称. (I)求函数f(x)的最小正周期;
(Ⅱ)在△ABC中,角A,B,C的对边分别为a,b,c,若a=1,f(
A)=
.求△ABC面积的最大值.
【答案】解:(I)f(x)=
cos2ωx﹣[
﹣
cos(2ωx﹣
)]=
cos(2ωx﹣
)﹣
cos2ωx=﹣
cos2ωx+
sin2ωx=
sin(2ωx﹣
). 令2ωx﹣
=
+kπ,解得x=
.∴f(x)的对称轴为x=
,
令
=π解得ω=
.∵
<w<1,∴当k=1时,ω=
.
∴f(x)=
sin(
x﹣
).
∴f(x)的最小正周期T=
.
(Ⅱ)∵f(
)=
sin(A﹣
)=
,∴sin(A﹣
)=
.∴A=
.
由余弦定理得cosA=
=
=
.∴b2+c2=bc+1≥2bc,∴bc≤1.
∴S△ABC=
=
≤
.
∴△ABC面积的最大值是 ![]()
【解析】(1)化简f(x),根据对称轴求出ω,得出f(x)的解析式,利用周期公式计算周期;(2)由f(
A)=
解出A,利用余弦定理和基本不等式得出bc的最大值,代入面积公式得出面积的最大值.
科目:高中数学 来源: 题型:
【题目】已知Sn表示数列{an}的前n项和,若对任意的n∈N*满足an+1=an+a2 , 且a3=2,则S2016=( )
A.1006×2013
B.1006×2014
C.1008×2015
D.1007×2015
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】α、β是两个平面,m、n是两条直线,有下列四个命题:
①如果m⊥n , m⊥α , n∥β , 那么α⊥β.
②如果m⊥α , n∥α , 那么m⊥n.
③如果α∥β , m
α , 那么m∥β.
④如果m∥n , α∥β , 那么m与α所成的角和n与β所成的角相等.
其中正确的命题有.(填写所有正确命题的编号)
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】△ABC中,若sinC=(
cosA+sinA)cosB,则( )
A.B= ![]()
B.2b=a+c
C.△ABC是直角三角形
D.a2=b2+c2或2B=A+C
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在△ABC中,角A,B,C所对的边长分别为a,b,c,且cos
=
.
(1)若a=3,b=
,求c的值;
(2)若f(A)=sin
(
cos
﹣sin
)+
,求f(A)的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在直角坐标系xOy中,圆C的参数方程
(φ为参数),以O为极点,x轴的非负半轴为极轴建立极坐标系.
(1)求圆C的极坐标方程;
(2)直线l的极坐标方程是2ρsin(θ+
)=3
,射线OM:θ=
与圆C的交点为O、P,与直线l的交点为Q,求线段PQ的长.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】数列{an}中,a1=1,an﹣an+1=anan+1 , n∈N* .
(1)求数列{an}的通项公式;
(2)Sn为{an}的前n项和,bn=S2n﹣Sn , 求bn的最小值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】极坐标系与直角坐标系xOy取相同的长度单位,以原点O为极点,以x轴正半轴为极轴.已知直线l的参数方程为
为参数).曲线C的极坐标方程为
.
(1)求直线l的倾斜角和曲线C的直角坐标方程;
(2)设直线C与曲线C交于A,B两点,与x轴的交点为M,求
的值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,在四棱锥P﹣ABCD中,AD∥BC,∠ADC=∠PAB=90°,BC=CD=
AD.E为棱AD的中点,异面直线PA与CD所成的角为90°. ![]()
(1)在平面PAB内找一点M,使得直线CM∥平面PBE,并说明理由;
(2)若二面角P﹣CD﹣A的大小为45°,求二面角P﹣CE﹣B的余弦值.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com