精英家教网 > 高中数学 > 题目详情
在三角形ABC中,角A,B,C所对的边分别是a,b,c,且acosC,bcosB,ccosA成等差数列,若b=
3
,则a+c的最大值为(  )
分析:由等差中项的定义得2bcosB=acosC+ccosA,结合正弦定理与两角和的正弦公式算出2sinBcosB=sin(A+C),利用诱导公式化简得cosB=
1
2
.根据余弦定理b2=a2+c2-2accosB的式子,结合b=
3
化简得(a+c)2=3+3ac,再利用基本不等式加以计算,可得当a=c=
3
时,a+c的最大值为2
3
解答:解:∵在△ABC中,acosC,bcosB,ccosA成等差数列,即2bcosB=acosC+ccosA,
∴根据正弦定理,可得2sinBcosB=sinAcosC+sinCcosA,
即2sinBcosB=sin(A+C).
又∵△ABC中,sin(A+C)=sin(180°-B)=sinB>0
∴2sinBcosB=sinB,两边约去sinB得2cosB=1,即cosB=
1
2

根据余弦定理,得b2=a2+c2-2accosB=a2+c2-ac,
b=
3
,∴a2+c2-ac=3,可得(a+c)2=3+3ac.
根据基本不等式,得ac≤[
1
2
(a+b)]2

∴(a+c)2=3+3ac≤3+
3
4
(a+b)2,解之得(a+c)2≤12.
由此可得当且仅当a=c=
3
时,a+c的最大值为2
3

故选:C
点评:本题给出△ABC满足的边角关系式,在已知边b长的情况下求a+c的最大值,着重考查了正余弦定理、两角和的正弦公式与诱导公式、利用基本不等式求最值等知识,属于中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

在三角形ABC中,角A.B.C成公差大于0的等差数列,
m
=(sinAcos
C-A
2
,cos2A)
n
=(2cosA,sin
C-A
2
)

(1)求
m
n
的取值范围;
(2)若设A.B.C的对应边分别为a.b.c,求
a+c
b
的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,在三角形ABC中,角A,B,C成等差数列,D是BC边的中点,AD=
3
AB=
3

(1)求边长AC的长;
(2)求sin∠DAC的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=(
3
sinωx+cosωx)sin(-
2
+ωx)(0<ω<
1
2
)
,且函数y=f(x)的图象的一个对称中心为(
3
,a)

(I)求a和函数f(x)的单调递减区间;
(II)在三角形ABC中,角A,B,C的对边分别是a,b,c,满足
2a-c
b
=
cosC
cosB
,求函数f(A)的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

在三角形ABC中,角A、B、C所对的边分别是a、b、c,若a=
3
2
b,A=2B,则cosB等于(  )
A、
3
3
B、
3
4
C、
3
5
D、
3
6

查看答案和解析>>

科目:高中数学 来源: 题型:

在三角形ABC中,角A、B、C及其对边a,b,c满足:ccosB=(2a-b)cosC.
(1)求角C的大小;
(2)求函数y=2sin2B-cos2A的值域.

查看答案和解析>>

同步练习册答案