精英家教网 > 高中数学 > 题目详情
16.函数f(x)=$\frac{{x}^{2}+x-5}{x-2}$,x∈(2,+∞)的最小值为(  )
A.4B.5C.6D.7

分析 换元可得y=f(x)=$\frac{{x}^{2}+x-5}{x-2}$=t+$\frac{1}{t}$+5,从而利用基本不等式求函数的最小值.

解答 解:令x-2=t,t>0;
y=f(x)=$\frac{{x}^{2}+x-5}{x-2}$
=$\frac{(t+2)^{2}+t+2-5}{t}$
=$\frac{{t}^{2}+5t+1}{t}$
=t+$\frac{1}{t}$+5≥7
(当且仅当t=1,即x=3时,等号成立),
故函数f(x)=$\frac{{x}^{2}+x-5}{x-2}$,x∈(2,+∞)的最小值为7,
故选D.

点评 本题考查了换元法的应用及基本不等式在求最值时的应用.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

6.如图,正△ABC的中线AF与中位线DE相交于G,已知△A′ED是△AED绕DE旋转过程中的一个图形,下列命题中,错误的是(  )
A.动点A′在平面ABC上的射影在线段AF上
B.恒有DE⊥平面A′GF
C.三棱锥A′-FED的体积有最大值
D.异面直线A′E与BD不可能垂直

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.已知sin30°=$\frac{1}{2}$,sinx=-$\frac{1}{2}$,求出x的解集.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.已知命题p:“?x0∈{|x|-1<x<1},${x}_{0}^{2}$-x0-m=0(m∈R)”是真命题,设实数m的取值集合为M.
(1)求集合M;
(2)设关于x的不等式(x-a)(x+a-2)<0(a∈R)的解集为N,若“x∈N”是“x∈M”的必要条件,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.函数f(x)=Asin(ωx+φ)(A>0,ω>0,|φ|<$\frac{π}{2}$)的部分图象如图示,将y=f(x)的图象向右平移$\frac{π}{6}$个单位后得到函数y=g(x)的图象,则g(x)的单凋递增区间为(  )
A.[2kπ-$\frac{π}{6}$,2kπ$+\frac{π}{3}$]B.[2k$π+\frac{π}{3}$,2kπ$+\frac{5π}{6}$]C.[kπ$+\frac{π}{3}$,kπ$+\frac{5π}{6}$]D.[kπ$-\frac{π}{6}$,kπ$+\frac{π}{3}$],

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.求与椭圆$\frac{{x}^{2}}{9}$+$\frac{{y}^{2}}{5}$=1有共同焦点且过点(3,$\sqrt{2}$)的双曲线的标准方程.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.已知等差数列{an}的通项公式为an=3-2n,
求:(1)-37是这个数列的第几项?(2)前10项和S10

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.已知函数y=f(x)的定义域为(0,+∞),当x>1时,f(x)<0,且对任意的x,y∈R,恒有f(xy)=f(x)+f(y),则不等式f(x)+f(x-2)≥f(8)的解集为(  )
A.(2,4]B.[-2,4]C.[4,+∞)D.(-∞,-2]∪[4,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.已知一个圆的圆心为A(2,1),且与圆x2+y2-3x=0相交于P1,P2两点,若|P1P2|=2,求这个圆的方程.

查看答案和解析>>

同步练习册答案