精英家教网 > 高中数学 > 题目详情
求双曲线
y2
16
-
x2
9
=1
的实轴和虚轴的长、顶点和焦点的坐标、离心率.
由题意,得双曲线的焦点在y轴上,a=4,b=3,
则c=
a2+b2
=5,
所以双曲线的实轴、虚轴的长分别为8,6,
顶点坐标为(0,-4),(0,4),
焦点坐标为(0,-5),(0,5),
离心率为e=
c
a
=
5
4
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

点P是双曲线
x2
9
-
y2
16
=1
的右支上一点,M、N分别是圆(x+5)2+y2=4和(x-5)2+y2=1上的点,
(1)求双曲线的渐近线方程;
(2)求|PM|-|PN|的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

求满足下列条件的双曲线的标准方程:
(1)已知双曲线的焦点F1,F2在x轴上,离心率为
2
,且过点(4,-
10)

(2)与双曲线
x2
9
-
y2
16
=1
有共同的渐近线,且经过点M(-3,2
3
)

查看答案和解析>>

科目:高中数学 来源: 题型:

求满足下列条件的曲线方程:
(1)经过两点P(-2
3
,1),Q(
3
,-2)
的椭圆的标准方程;
(2)与双曲线
x2
9
-
y2
16
=1
有公共渐近线,且经过点(-3,2
3
)的双曲线的标准方程;
(3)焦点在直线x+3y+15=0上的抛物线的标准方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2010•福建模拟)已知中心的坐标原点,以坐标轴为对称轴的双曲线C过点Q(2,
3
3
)
,且点Q在x轴上的射影恰为该双曲线的一个焦点F1
(Ⅰ)求双曲线C的方程;
(Ⅱ)命题:“过椭圆
x2
25
+
y2
16
=1
的一个焦点F作与x轴不垂直的任意直线l”交椭圆于A、B两点,线段AB的垂直平分线交x轴于点M,则
|AB|
|FM|
为定值,且定值是
10
3
”.命题中涉及了这么几个要素:给定的圆锥曲线E,过该圆锥曲线焦点F的弦AB,AB的垂直平分线与焦点所在的对称轴的交点M,AB的长度与F、M两点间距离的比值.试类比上述命题,写出一个关于抛物线C的类似的正确命题,并加以证明
(Ⅲ)试推广(Ⅱ)中的命题,写出关于圆锥曲线(椭圆、双曲线、抛物线)的统一的一般性命题(不必证明).

查看答案和解析>>

科目:高中数学 来源:福建模拟 题型:解答题

已知中心的坐标原点,以坐标轴为对称轴的双曲线C过点Q(2,
3
3
)
,且点Q在x轴上的射影恰为该双曲线的一个焦点F1
(Ⅰ)求双曲线C的方程;
(Ⅱ)命题:“过椭圆
x2
25
+
y2
16
=1
的一个焦点F作与x轴不垂直的任意直线l”交椭圆于A、B两点,线段AB的垂直平分线交x轴于点M,则
|AB|
|FM|
为定值,且定值是
10
3
”.命题中涉及了这么几个要素:给定的圆锥曲线E,过该圆锥曲线焦点F的弦AB,AB的垂直平分线与焦点所在的对称轴的交点M,AB的长度与F、M两点间距离的比值.试类比上述命题,写出一个关于抛物线C的类似的正确命题,并加以证明
(Ⅲ)试推广(Ⅱ)中的命题,写出关于圆锥曲线(椭圆、双曲线、抛物线)的统一的一般性命题(不必证明).

查看答案和解析>>

同步练习册答案