精英家教网 > 高中数学 > 题目详情

已知数列{Fn},满足:F1=F2=1,Fn+2=Fn+1+Fn(n∈N*),rn是Fn除以3所得的余数,则r2011=________.

2
分析:根据rn为Fn除以3所得的余数,依次写出Fn的各项,从而可得{rn}的奇数项按1,2,2,1的周期规律排列,利用r2011是第1006项,第252个周期的第2项,可得结论.
解答:根据rn为Fn除以3所得的余数,依次写出Fn的各项
F1 F2 F3 F4 F5 F6 F7 F8 F9 F10 F11 F12 F13 F14 F15
1 1 2 3 5 8 13 21 34 55 89 144 233 377 610
r1 r2 r3 r4 r5 r6 r7 r8 r9 r10 r11 r12 r13 r14 r15
1 1 2 0 2 2 1 0 1 1 2 0 2 2 1
从上面可以看出
r1=1,r3=2,r5=2,r7=1,r9=1,r11=2,r13=2,r15=1
∴{rn}的奇数项按1,2,2,1的周期规律排列.
∵r2011是第1006项,第252个周期的第2项,故r2011=2
故答案为:2
点评:本题考查归纳猜想的能力,考查学生分析解决问题的能力,属于中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知数列{an}满足:a1=-1,an+1=(1+cos2
2
)an+sin2
2
,n∈N*

(1)求a2,a3,a4;并证明:a2m+1+2=2(a2m-1+2),m∈N*
(2)设fn(x)=
1
2
+rcos[(a1+2)x]+r2cos[(a3+2)x]+r3cos[(a5+2)x]+…+rn-1cos[(a2n-3+2)x]
(n≥2,n∈N*
①证明:对任意x∈R,当|r|≤
1
2
时,rcos[(a1+2)x]+r2cos[(a3+2)x]≥-
3
8

②证明:当|r|≤
1
2
,f2n+1(x)对任意x∈R和自然数n(n≥2)都有f2n+1(x)>0.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知数列{an}满足a1=1,
an-1
an
=
an-1+1
1-an
(n∈N*,n>1).
(1)求证:数列{
1
an
}
是等差数列;
(2)求数列{anan+1}的前n项和Sn
(3)设fn(x)=Snx2n+1,bn=f'n(2),求数列{bn}的前n项和Tn

查看答案和解析>>

科目:高中数学 来源: 题型:

已知数列{Fn},满足:F1=F2=1,Fn+2=Fn+1+Fn(n∈N*),rn是Fn除以3所得的余数,则r2011=
2
2

查看答案和解析>>

科目:高中数学 来源:2011-2012学年湖南省仙桃市高三(下)5月仿真模拟数学试卷(文科)(解析版) 题型:解答题

已知数列{Fn},满足:F1=F2=1,Fn+2=Fn+1+Fn(n∈N*),rn是Fn除以3所得的余数,则r2011=   

查看答案和解析>>

同步练习册答案