精英家教网 > 高中数学 > 题目详情

已知函数数学公式,a,b∈R,f'(x)是函数f(x)的导函数.
(I)若b=a-1,求函数f(x)的单调递减区间;
(II)若-1≤a≤1,-1≤b≤1,求方程f'(x)=0有实数根的概率.

解:(I)由,b=a-1得:
f'(x)=x2+ax+b=x2+ax+a-1=(x+1)(x+a-1)…(2分)
令f'(x)=0得x1=-1;x2=1-a…(3分)
①若-1<1-a,即a<2时,令 f'(x)<0解得-1<x<1-a
此时函数f(x)的减区间是(-1,1-a)…(5分)
②若-1>1-a,即a>2时,令 f'(x)<0解得1-a<x<-1,此时函数f(x)的减区间是(1-a,-1)…(7分)
③若-1=1-a,即a=2时,f'(x)=(x+1)2≥0,函数f(x)在R上单调递增,没有减区间…(8分)
(II)方程f'(x)=0,即x2+ax+b=0有实数根,则△≥0,即a2≥4b,…(10分)
若-1≤a≤1,-1≤b≤1,
方程f'(x)=0有实数根的条件是(※)…(11分)
满足不等式组的区域如图所示,条件(※)对应的图形区域的面积为:
==…(13分)
而条件-1≤a≤1,-1≤b≤1的对应的面积为S=4,
所以,方程f'(x)=0有实数根的概率为…(14分)
分析:(I)求导数,令导数小于零,解此不等式即可求得函数y=f(x)的单调递减区间.
(II)此小题是一个几何概率模型,如设方程f'(x)=0有实根为事件B.先求出区域D={(a,b)|-1≤a≤1,-1≤b≤1}的面积,再求出方程有实根对应区域为d与区域D的公共部分的面积,再有公式求出概率.
点评:此题是个基础题.考查学生利用导数研究函数的单调性、等可能事件的概率,考查计算能力和数形结合思想.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知函数(a,b∈R),其图象在点(1,f(1))处的切线方程为x+y﹣3=0.

(1)求a,b的值;

(2)求函数f(x)的单调区间和极值;

(3)求函数f(x)在区间[﹣2,5]上的最大值.

查看答案和解析>>

科目:高中数学 来源:2010-2011学年湖北省黄冈市黄州一中高三(上)9月月考数学试卷(解析版) 题型:解答题

已知函数(a,b∈R)
(1)若y=f(x)图象上的点处的切线斜率为-4,求y=f(x)的极大值;
(2)若y=f(x)在区间[-1,2]上是单调减函数,求a+b的最小值.

查看答案和解析>>

科目:高中数学 来源:《第1章 导数及其应用》2010年单元测试卷(3)(解析版) 题型:解答题

已知函数(a,b∈R)
(1)若y=f(x)图象上的点处的切线斜率为-4,求y=f(x)的极大值;
(2)若y=f(x)在区间[-1,2]上是单调减函数,求a+b的最小值.

查看答案和解析>>

科目:高中数学 来源:2009-2010学年江苏省苏州市六校联合高三调研数学试卷(解析版) 题型:解答题

已知函数(a、b∈R),
(Ⅰ)若f(x)在R上存在最大值与最小值,且其最大值与最小值的和为2680,试求a和b的值;
(Ⅱ)若f(x)为奇函数:
(1)是否存在实数b,使得f(x)在为增函数,为减函数,若存在,求出b的值,若不存在,请说明理由;
(2)如果当x≥0时,都有f(x)≤0恒成立,试求b的取值范围.

查看答案和解析>>

科目:高中数学 来源:2009-2010学年江苏省南通市海安高级中学高三(下)3月月考数学试卷(理科)(解析版) 题型:解答题

已知函数(a、b∈R),
(Ⅰ)若f(x)在R上存在最大值与最小值,且其最大值与最小值的和为2680,试求a和b的值;
(Ⅱ)若f(x)为奇函数:
(1)是否存在实数b,使得f(x)在为增函数,为减函数,若存在,求出b的值,若不存在,请说明理由;
(2)如果当x≥0时,都有f(x)≤0恒成立,试求b的取值范围.

查看答案和解析>>

同步练习册答案