精英家教网 > 高中数学 > 题目详情
17.圆心在直线2x+y=0上,且与直线x-y+1=0切与点P(2,-1)的圆的标准方程(x-1)2+(y+2)2=2.

分析 设出圆的标准方程,由已知条件结合直线垂直的性质和点在圆上求出圆心和半径,由此能求出圆的方程.

解答 解:设圆的标准方程为(x-a)2+(y-b)2=r2
∵圆心在2x+y=0上,∴2a+b=0,(1)
∵CM与切线垂直,∴$\frac{b+1}{a-2}$=1,(2),
由(1)、(2),得a=1,b=-2,
又∵M点在圆上,代入圆的方程得r2=2,
∴所求圆的标准方程为(x-1)2+(y+2)2=2.
故答案为:(x-1)2+(y+2)2=2.

点评 本题考查圆的标准方程的求法,是中档题,解题时要认真审题,注意待定系数法的合理运用.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

7.在平面直角坐标系中,设点P1(x1,y1)、P2(x2,y2),称d(P1,P2)=max{|x1-x2|,|y1-y2|}(其中max{a,b}表示a、b中的较大数)为P1、P2两点的“切比雪夫距离”;
(1)若P(3,1)、Q为直线y=2x-1上的动点,求P,Q两点的“切比雪夫距离”的最小值;
(2)定点C(x0,y0),动点P(x,y)满足d(C,P)=r(r>0),请求出P点所在的曲线所围成图形的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.为了了解某同学的数学学习情况,对他的6次数学测试成绩(满分100分)进行统计,作出的茎叶图如图所示,则该同学数学成绩的中位数为84.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.有1999个集合,每个集合有45个元素,任意两个集合的并集有89个元素,问此1999个集合的并集有多少个元素.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.已知四组函数:①$y=\sqrt{x^2}-1$与$y=\root{3}{x^3}-1$;②f(x)=x0与$g(x)=\frac{1}{x^0}$;③$y=\frac{x^2}{|x|}$与$y=\left\{{\begin{array}{l}{t,t>0}\\{-t,t<0}\end{array}}\right.$;④f(x)=2x,D={0,1,2,3}与$g(x)=\frac{1}{6}{x^3}+\frac{5}{6}x+1,D=\left\{{0,1,2,3}\right\}$.表示同一函数的是②③.(写出所有符合要求的函数组的序号)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.向量$\overrightarrow{a}$=(sinθ,$\sqrt{3}$),$\overrightarrow{b}$=(1,cosθ),其中θ∈(-$\frac{π}{2}$,$\frac{π}{2}$),则|$\overrightarrow{a}$+$\overrightarrow{b}$|的范围是($\sqrt{3}$,3].

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.下列命题中真命题是(  )
A.若$\overrightarrow{a}$与$\overrightarrow{b}$互为负向量,则$\overrightarrow{a}$+$\overrightarrow{b}$=0B.若 $\overrightarrow{a}$•$\overrightarrow{c}$=$\overrightarrow{b}$•$\overrightarrow{c}$,则$\overrightarrow{a}$=$\overrightarrow{b}$
C.若k为实数且k$\overrightarrow{a}$=$\overrightarrow{0}$,则k=0或$\overrightarrow{a}$=$\overrightarrow{0}$D.若$\overrightarrow{a}$∥$\overrightarrow{b}$,则$\overrightarrow{a}$在$\overrightarrow{b}$上的投影为|$\overrightarrow{a}$|

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.在平面直角坐标系xOy中,将函数y=ex+1的图象沿着x轴的正方向平移1个单位长度,再作关于y轴的对称变换,得到函数f(x)的图象,则函数f(x)的解析式为f(x)=e-x

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.三个数a=0.67,b=70.6,c=log0.76的大小关系为(  )
A.b<c<aB.b<a<cC.c<a<bD.c<b<a

查看答案和解析>>

同步练习册答案