精英家教网 > 高中数学 > 题目详情
a
=(2,1,1),
b
=(-1,x,1)且
a
b
,则x的值为(  )
分析:利用空间向量的垂直与向量积的关系求值.
解答:解:因为
a
=(2,1,1),
b
=(-1,x,1)且
a
b

所以
a
?
b
=0
,即-2+x+1=0,解得x=1.
故选A.
点评:本题主要考查利用空间数量积研究向量垂直的问题,比较基础.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知函数f(x)=log3(ax+b)的图象经过点A(2,1)和B(5,2),记an=3f(n),n∈N*
(1)求数列{an}的通项公式;
(2)设bn=
an
2n
,Tn=b1+b2+…bn,若Tn<m(m∈Z),求m的最小值;
(3)求使不等式(1+
1
a1
)(1+
1
a2
)(1+
1
a2
)
…(1+
1
an
)
p
2n+1
对一切n∈N*,均成立的最大实数p.

查看答案和解析>>

科目:高中数学 来源: 题型:

f(x)=x2xb,且f(log2a)=b,log2f(a)=2(a≠1).

(1)求f(log2x)的最小值及对应的x值;

(2)x取何值时,f(log2x)>f(1),且log2f(x)<f(1).

查看答案和解析>>

科目:高中数学 来源:2014届广东省高一期中考试文科数学试卷A卷(解析版) 题型:解答题

已知函数f(x)(x∈R)满足f(x)=,a≠0,f(1)=1,且使f(x)=2x成立的实数x只有一个.

(1)求函数f(x)的表达式;

(2)若数列{an}满足a1,an+1=f(an),bn-1,n∈N*,证明数列{bn}是等比数列,并求出{bn}的通项公式;

(3)在(2)的条件下,证明:a1b1+a2b2+…+anbn<1(n∈N*).

【解析】解: (1)由f(x)=,f(1)=1,得a=2b+1.

由f(x)=2x只有一解,即=2x,

也就是2ax2-2(1+b)x=0(a≠0)只有一解,

∴b=-1.∴a=-1.故f(x)=.…………………………………………4分

(2)an+1=f(an)=(n∈N*),bn-1, ∴

∴{bn}为等比数列,q=.又∵a1,∴b1-1=

bn=b1qn-1n-1n(n∈N*).……………………………9分

(3)证明:∵anbn=an=1-an=1-

∴a1b1+a2b2+…+anbn+…+<+…+

=1-<1(n∈N*).

 

查看答案和解析>>

科目:高中数学 来源:北京期中题 题型:解答题

设奇函数f(x)的定义域为(﹣∞,0)∪(0+∞),且在(0,+∞)上为增函数.
(1)若f(1)=0,解关于x的不等式:f(1+logax)>0(0<a<1).
(2)若f(﹣2)=﹣1,当m>0,n>0时,恒有f(mn)=f(m)+f(n),求|f(t)+1|<1时,t的取值范围.

查看答案和解析>>

同步练习册答案