精英家教网 > 高中数学 > 题目详情

已知函数.

(1)若函数满足,且在定义域内恒成立,求实数b的取值范围;

(2)若函数在定义域上是单调函数,求实数的取值范围;

(3)当时,试比较的大小.

 

【答案】

(1) ;(2) ;(3).

【解析】

试题分析:(1)先利用求出,然后在不等式中分离参数,构造函数求的范围;(2) 要使在定义域上是单调函数,则其导数应在定义域上恒正或恒负,利用,求出的最值,将在此处断开讨论,求出范围;(3)由(1)知上单调递减,所以时,,而时,,故可得证.

试题解析:(1)因为,所以,由         1分

,可得上递减,

上递增,所以,即         4分

(2)若,令

所以时取得极小值即最小值

而当时  必有根,必有极值,在定义域上不单调.

所以                                      8分

(3)由(1)知上单调递减

所以时,         10分

时,,所以

所以                                          12分

考点:利用导数求函数最值、利用函数单调性证明不等式、利用导数判断函数增减性.

 

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(本小题满分12分)已知函数

(1)若,试确定函数的单调区间;(2)若,且对于任意恒成立,试确定实数的取值范围;(3)设函数,求证:

查看答案和解析>>

科目:高中数学 来源:2014届宁夏高二上学期期末考试文科数学试卷(解析版) 题型:解答题

(本题满分12分)已知函数

(1)若,求的单调区间;

(2)当时,求证:

 

查看答案和解析>>

科目:高中数学 来源:2012-2013学年湖南省岳阳市高三第一次质量检测理科数学试卷(解析版) 题型:解答题

(本小题满分13分)已知函数

(1)若的极值点,求实数的值;

(2)若上为增函数,求实数的取值范围;

(3)当时,方程有实根,求实数的最大值.

 

查看答案和解析>>

科目:高中数学 来源:2011-2012学年湖北省华中师大一附中高三上学期期中检测文科数学试卷(解析版) 题型:解答题

已知函数

(1)若,求函数的值;

(2)求函数的值域。

 

查看答案和解析>>

科目:高中数学 来源:吉林省10-11学年高二下学期期末考试数学(理) 题型:解答题

已知函数

(1)若从集合中任取一个元素,从集合中任取一个元素,求方程有两个不相等实根的概率;

(2)若是从区间中任取的一个数,是从区间中任取的一个数,求方程没有实根的概率.

 

查看答案和解析>>

同步练习册答案