(理)(本小题满分12分)已知y=f(x)是偶函数,当x>0时,,
且当时,恒成立,求的最小值.
科目:高中数学 来源: 题型:
(08年全国卷Ⅰ理)(本小题满分12分)
已知5只动物中有1只患有某种疾病,需要通过化验血液来确定患病的动物.血液化验结果呈阳性的即为患病动物,呈阴性的即没患病.下面是两种化验方案:
方案甲:逐个化验,直到能确定患病动物为止.
方案乙:先任取3只,将它们的血液混在一起化验.若结果呈阳性则表明患病动物为这3只中的1只,然后再逐个化验,直到能确定患病动物为止;若结果呈阴性则在另外2只中任取1只化验.
(Ⅰ)求依方案甲所需化验次数不少于依方案乙所需化验次数的概率;
(Ⅱ)表示依方案乙所需化验次数,求的期望.
查看答案和解析>>
科目:高中数学 来源: 题型:
(08年安徽皖南八校联考理)(本小题满分12分)
设函数,其中向量,.
(1)求函数的最小正周期和在上的单调递增区间;
(2)当时,的最大值为4,求实数的值.
查看答案和解析>>
科目:高中数学 来源: 题型:
(2009安徽卷理)(本小题满分13分)
如图,四棱锥F-ABCD的底面ABCD是菱形,其对角线AC=2,BD=,AE、CF都与平面ABCD垂直,AE=1,CF=2.
(I)求二面角B-AF-D的大小;
(II)求四棱锥E-ABCD与四棱锥F-ABCD公共部分的体积.
查看答案和解析>>
科目:高中数学 来源: 题型:
(08年广东卷理)(本小题满分14分)
如图5所示,四棱锥的底面是半径为的圆的内接四边形,其中是圆的直径,,,垂直底面,,分别是上的点,且,过点作的平行线交于.
(1)求与平面所成角的正弦值;
(2)证明:是直角三角形;
(3)当时,求的面积.
查看答案和解析>>
科目:高中数学 来源: 题型:
(广东卷理)(本小题满分14分)
已知曲线与直线交于两点和,且.记曲线在点和点之间那一段与线段所围成的平面区域(含边界)为.设点是上的任一点,且点与点和点均不重合.
(1)若点是线段的中点,试求线段的中点的轨迹方程;
(2)若曲线与有公共点,试求的最小值.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com