精英家教网 > 高中数学 > 题目详情
定义在R上的函数f(x)满足f(x)=
log 2(1-x),x≤0
f(x-1)-f(x-2),x>0
,则f(2011)的值为
 
分析:通过党x>0时函数值的关系,仿写新的等式,判断出函数以6为周期,将f(2011)转化为f(1)的值代入解析式求出值.
解答:解:当x>0时,f(x)=f(x-1)-f(x-2);
所以有f(x-1)=f(x-2)-f(x-3);
所以f(x)=-f(x-3);所以f(x)=f(x-6);
所以f(x)的周期为6;
所以f(2011)=f(335×6+1)=f(1)=f(0)-f(-1)=-1;
故答案为:-1.
点评:求自变量较大的函数值是,常通过判断函数的性质一般判断出函数的周期性,再求值.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

定义在R上的函数f(x)既是偶函数又是周期函数,若f(x)的最小正周期是π,且当x∈[0,
π
2
]时,f(x)=sinx,则f(
3
)的值为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

20、已知定义在R上的函数f(x)=-2x3+bx2+cx(b,c∈R),函数F(x)=f(x)-3x2是奇函数,函数f(x)在x=-1处取极值.
(1)求f(x)的解析式;
(2)讨论f(x)在区间[-3,3]上的单调性.

查看答案和解析>>

科目:高中数学 来源: 题型:

定义在R上的函数f(x)满足:f(x+2)=
1-f(x)1+f(x)
,当x∈(0,4)时,f(x)=x2-1,则f(2010)=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知定义在R上的函数f(x)=Acos(ωx+φ)(A>0,ω>0,|φ|≤
π
2
),最大值与最小值的差为4,相邻两个最低点之间距离为π,函数y=sin(2x+
π
3
)图象所有对称中心都在f(x)图象的对称轴上.
(1)求f(x)的表达式;    
(2)若f(
x0
2
)=
3
2
(x0∈[-
π
2
π
2
]),求cos(x0-
π
3
)的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知定义在R上的函数f(x)的图象是连续不断的,且有如下对应值表:
x 0 1 2 3
f(x) 3.1 0.1 -0.9 -3
那么函数f(x)一定存在零点的区间是(  )

查看答案和解析>>

同步练习册答案