(Àí)(1)Ö¤Ã÷£ºÈôÊýÁÐ{an}ÓеÝÍƹØϵan+1=Aan+B£¬ÆäÖÐA¡¢BΪ³£Êý£¬ÇÒA¡Ù1£¬B¡Ù0£¬ÔòÊýÁÐ{an}ÊÇÒÔAΪ¹«±ÈµÄµÈ±ÈÊýÁУ»

(2)ÈôÊýÁÐ{an}¶ÔÓÚÈÎÒâµÄn¡ÊN*¶¼ÓÐSn=2an-n£¬Áîf(x)=a1x+a2x2+¡­+anxn£¬Çóº¯Êýf(x)ÔÚx=1´¦µÄµ¼Êý£®

(ÎÄ)ÉèÊýÁÐ{an}µÄÇ°nÏîºÍΪSn£¬ÒÑÖª¶ÔÓÚÈÎÒâµÄn¡ÊN*£¬¶¼ÓÐSn=2an-n£®

(1)ÇóÊýÁÐ{an}µÄÊ×Ïîa1¼°µÝÍƹØϵʽ£ºan+1=f(an)£»

(2)ÏÈÔĶÁÏÂÃæµÄ¶¨Àí£º¡°ÈôÊýÁÐ{an}ÓеÝÍƹØϵan+1=Aan+B£¬ÆäÖÐA¡¢BΪ³£Êý£¬ÇÒA¡Ù1£¬B¡Ù0£¬

ÔòÊýÁÐ{an}ÊÇÒÔAΪ¹«±ÈµÄµÈ±ÈÊýÁС±£®ÇëÄãÔÚ(1)µÄ»ù´¡ÉÏÓ¦Óñ¾¶¨Àí£¬ÇóÊýÁÐ{an}µÄͨÏʽ£»

(3)ÇóÊýÁÐ{an}µÄÇ°nÏîºÍSn£®

´ð°¸£º(Àí)(1)an+1=Aan+B=Aan=A(an)

A(an)

¡à{an}ÊÇÒÔAΪ¹«±ÈµÄµÈ±ÈÊýÁУ®

(2)¡ßSn+1=2an+1-(n+1)£¬Sn=2an-n

¡àan+1=2an+1-2an-1

¼´an+1=2an+1

ÓÉ(1)Öª{an+1}Êǹ«±ÈΪ2µÄµÈ±ÈÊýÁÐ

¡àan=2n-1

¡ßf¡ä(x)=a1+2a2+3a3x2+¡­+nanxn-1

¡àf¡ä(1)=a1+2a2+3a3+¡­+nan

=(2+2¡Á22+3¡Á23+¡­+n¡Á2n)-(1+2+3+¡­+n)

=2+(n-2)2n+1

(ÎÄ)(1)¡ßa1=2a1-1£¬¡àa1=1

¡ßSn=2an-n                                                                   ¢Ù

¡àSn+1=2an+1-(n+1)                                                             ¢Ú

¢Ú-¢ÙµÃan+1=2an+1-2an-1

¡àan+1=2an+1£®

(2)¡ßan+1=2an+1

¡à{an+1}ÊǵȱÈÊýÁУ¬¹«±ÈΪ2£¬Ê×ÏîΪan+1=2

¡àan+1=2¡Á2n-1£¬¡àan=2n-1£®

(3)Sn=(2-1)+(22-1)+(23-1)+¡­+(2n-1)

=(2+22+23+¡­+2n)-n=2n+1-2-n£®

Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

ÒÑÖªº¯Êýf(x)=
3
x
a
+
3
(a-1)
x
£¨a¡Ù0ÇÒa¡Ù1£©£®
£¨1£©ÊÔ¾ÍʵÊýaµÄ²»Í¬È¡Öµ£¬Ð´³ö¸Ãº¯ÊýµÄµ¥µ÷µÝÔöÇø¼ä£»
£¨2£©ÒÑÖªµ±x£¾0ʱ£¬º¯ÊýÔÚ(0£¬
6
)
Éϵ¥µ÷µÝ¼õ£¬ÔÚ(
6
£¬+¡Þ)
Éϵ¥µ÷µÝÔö£¬ÇóaµÄÖµ²¢Ð´³öº¯ÊýµÄ½âÎöʽ£»
£¨3£©£¨Àí£©¼Ç£¨2£©Öеĺ¯ÊýµÄͼÏóΪÇúÏßC£¬ÊÔÎÊÊÇ·ñ´æÔÚ¾­¹ýÔ­µãµÄÖ±Ïßl£¬Ê¹µÃlΪÇúÏßCµÄ¶Ô³ÆÖ᣿Èô´æÔÚ£¬Çó³ölµÄ·½³Ì£»Èô²»´æÔÚ£¬Çë˵Ã÷ÀíÓÉ£®
£¨ÎÄ£© ¼Ç£¨2£©Öеĺ¯ÊýµÄͼÏóΪÇúÏßC£¬ÊÔÎÊÇúÏßCÊÇ·ñΪÖÐÐĶԳÆͼÐΣ¿ÈôÊÇ£¬ÇëÇó³ö¶Ô³ÆÖÐÐĵÄ×ø±ê²¢¼ÓÒÔÖ¤Ã÷£»Èô²»ÊÇ£¬Çë˵Ã÷ÀíÓÉ£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º²»Ïê ÌâÐÍ£º½â´ðÌâ

ÒÑÖªº¯Êýf(x)=
3
x
a
+
3
(a-1)
x
£¨a¡Ù0ÇÒa¡Ù1£©£®
£¨1£©ÊÔ¾ÍʵÊýaµÄ²»Í¬È¡Öµ£¬Ð´³ö¸Ãº¯ÊýµÄµ¥µ÷µÝÔöÇø¼ä£»
£¨2£©ÒÑÖªµ±x£¾0ʱ£¬º¯ÊýÔÚ(0£¬
6
)
Éϵ¥µ÷µÝ¼õ£¬ÔÚ(
6
£¬+¡Þ)
Éϵ¥µ÷µÝÔö£¬ÇóaµÄÖµ²¢Ð´³öº¯ÊýµÄ½âÎöʽ£»
£¨3£©£¨Àí£©¼Ç£¨2£©Öеĺ¯ÊýµÄͼÏóΪÇúÏßC£¬ÊÔÎÊÊÇ·ñ´æÔÚ¾­¹ýÔ­µãµÄÖ±Ïßl£¬Ê¹µÃlΪÇúÏßCµÄ¶Ô³ÆÖ᣿Èô´æÔÚ£¬Çó³ölµÄ·½³Ì£»Èô²»´æÔÚ£¬Çë˵Ã÷ÀíÓÉ£®
£¨ÎÄ£© ¼Ç£¨2£©Öеĺ¯ÊýµÄͼÏóΪÇúÏßC£¬ÊÔÎÊÇúÏßCÊÇ·ñΪÖÐÐĶԳÆͼÐΣ¿ÈôÊÇ£¬ÇëÇó³ö¶Ô³ÆÖÐÐĵÄ×ø±ê²¢¼ÓÒÔÖ¤Ã÷£»Èô²»ÊÇ£¬Çë˵Ã÷ÀíÓÉ£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º2011Äê¹ã¶«Ê¡Ö´ÐÅÖÐѧ¸ß¶þÉÏѧÆÚÆÚÖп¼ÊÔÊýѧ ÌâÐÍ£º½â´ðÌâ

£¨±¾Ð¡ÌâÂú·Ö14·Ö£© Èçͼ£¬ÔÚ³¤·½Ìå   
(1)Ö¤Ã÷£ºµ±µã;
(2)£¨Àí£©ÔÚÀâÉÏÊÇ·ñ´æÔڵ㣿Èô´æÔÚ£¬Çó³öµÄ³¤£»Èô²»´æÔÚ£¬Çë˵Ã÷ÀíÓÉ.
£¨ÎÄ£©ÔÚÀâʹÈô´æÔÚ£¬Çó³öµÄ³¤£»Èô²»´æÔÚ£¬Çë˵Ã÷ÀíÓÉ¡£

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º2008-2009ѧÄêËÄ´¨Ê¡³É¶¼ÆßÖиßÈýÊýѧרÏîѵÁ·£ºÖ¸Êý¡¢¶ÔÊýº¯Êý£¨½âÎö°æ£© ÌâÐÍ£º½â´ðÌâ

ÒÑÖªº¯Êý£¨a¡Ù0ÇÒa¡Ù1£©£®
£¨1£©ÊÔ¾ÍʵÊýaµÄ²»Í¬È¡Öµ£¬Ð´³ö¸Ãº¯ÊýµÄµ¥µ÷µÝÔöÇø¼ä£»
£¨2£©ÒÑÖªµ±x£¾0ʱ£¬º¯ÊýÔÚÉϵ¥µ÷µÝ¼õ£¬ÔÚÉϵ¥µ÷µÝÔö£¬ÇóaµÄÖµ²¢Ð´³öº¯ÊýµÄ½âÎöʽ£»
£¨3£©£¨Àí£©¼Ç£¨2£©Öеĺ¯ÊýµÄͼÏóΪÇúÏßC£¬ÊÔÎÊÊÇ·ñ´æÔÚ¾­¹ýÔ­µãµÄÖ±Ïßl£¬Ê¹µÃlΪÇúÏßCµÄ¶Ô³ÆÖ᣿Èô´æÔÚ£¬Çó³ölµÄ·½³Ì£»Èô²»´æÔÚ£¬Çë˵Ã÷ÀíÓÉ£®
£¨ÎÄ£© ¼Ç£¨2£©Öеĺ¯ÊýµÄͼÏóΪÇúÏßC£¬ÊÔÎÊÇúÏßCÊÇ·ñΪÖÐÐĶԳÆͼÐΣ¿ÈôÊÇ£¬ÇëÇó³ö¶Ô³ÆÖÐÐĵÄ×ø±ê²¢¼ÓÒÔÖ¤Ã÷£»Èô²»ÊÇ£¬Çë˵Ã÷ÀíÓÉ£®

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸