精英家教网 > 高中数学 > 题目详情

如图所示,在矩形ABCD中,AB=2BC=2a,E为AB上一点,将B点沿线段EC折起至点P,连接PA、PC、PD,取PD的中点F,若有AF∥平面PEC.

(1)试确定E点位置;

(2)若异面直线PE、CD所成的角为60°,并且PA的长度大于a,

求证:平面PEC⊥平面AECD.

(1) E为AB的中点(2)证明略


解析:

(1)  E为AB的中点.

证明如下:取PC的中点G,连接GE,GF.

由条件知GF∥CD,EA∥CD,∴GF∥EA.

则G、E、A、F四点共面.

∵AF∥平面PEC,

平面GEAF∩平面PEC=GE,

∴FA∥GE.

则四边形GEAF为平行四边形.

∴GF=AE,∵GF=CD,∴EA=CD=BA.

即E为AB的中点.

(2)  ∵EA∥CD,PE、CD所成的角为60°,且PA的长度大于a.

∴∠PEA=120°.

∵PE=BE=EA=a,∴PA=a.

取CE的中点M,连接PM,AM,BM,在△AEM中,      

AM==a.

∵PM=BM=a,∴PM2+AM2=PA2.

则∠PMA=90°,PM⊥AM.

∵PM⊥EC,EC∩AM=M,

∴PM⊥平面AECD.

∵PM平面PEC,

∴平面PEC⊥平面AECD.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

19、如图所示,在矩形ABCD中,AB=4,AD=2,E是CD的中点,O为AE的中点,以AE为折痕将△ADE向上折起,使D到P点位置,且PC=PB,F是BP的中点.
(Ⅰ)求证:CF∥面APE;
(Ⅱ)求证:PO⊥面ABCE.

查看答案和解析>>

科目:高中数学 来源: 题型:

19、如图所示,在矩形ABCD中,AB=4,AD=2,E是CD的中点,O为AE的中点,F是AB的中点.以AE为折痕将△ADE向上折起,使面DAE⊥面ABCE.
(1)求证:OF∥面BDE;
(2)求证:AD⊥面BDE.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图所示,在矩形ABCD中,AB=4,AD=2,E是CD的中点,O为AE的中点,以AE为折痕将
△ADE向上折起,使D到P,且PC=PB
(1)求证:PO⊥面ABCE.(2)求AC与面PAB所成角θ的正弦值.
精英家教网

查看答案和解析>>

科目:高中数学 来源: 题型:

如图所示,在矩形ABCD中,AB=4cm,BC=2cm,在图形上随机撒一粒黄豆,则黄豆落到圆上的概率是
π
8
π
8

查看答案和解析>>

科目:高中数学 来源: 题型:

精英家教网如图所示,在矩形ABCD中,已知AB=a,BC=b.a≤3b,在AB,AD,CD,CB上分别截取AE,AH,CG,CF,且都等于x,则四边形EFGH面积的最大值为
 

查看答案和解析>>

同步练习册答案