精英家教网 > 高中数学 > 题目详情

在如图所示的几何体中,四边形ABCD为正方形,为直角三角形,,且.

1)证明:平面平面

2)若AB=2AE,求异面直线BEAC所成角的余弦值.

 

【答案】

1)详见解析;(2.

【解析】

试题分析:1)由已知可知AEAB,又AEAD,所以AE平面ABCD,所以AEDB,又ABCD为正方形,所以DBAC,所以DB平面AEC,而BD平面BED,故有平面AEC平面BED.

2)作DE的中点F,连接OFAF,由于ODB的中点,且OFBE,可知FOA或其补角是异面直线BEAC所成的角;设正方形ABCD的边长为2,则,由于AB=2AE

可知,则,又=,由余弦定理的推理FOA==,故异面直线BEAC所成的角的余弦值为.

试题解析:1)由已知有AEAB,又AEAD

所以AE平面ABCD,所以AEDB3

ABCD为正方形,所以DBAC4

所以DB平面AECBDBED

故有平面AEC平面BED. 6

2)作DE的中点F,连接OFAF

ODB的中点,

OFBE∴∠FOA或其补角是异面直线BEAC所成的角。 8

设正方形ABCD的边长为2

9

AB=2AE

10

=,FOA==

异面直线BEAC所成的角的余弦值为 12.

考点:1.直线与平面垂直的判定定理,平面与平面垂直的判定定理;2.异面直线成角;3.余弦定理的推论.

 

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

在如图所示的几何体中,四边形ABCD、ADEF、ABGF均为全等的直角梯形,且BC∥AD,AB=AD=2BC.
(Ⅰ)求证:CE∥平面ABGF;
(Ⅱ)求二面角G-CE-D的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

在如图所示的几何体中,平行四边形ABCD的顶点都在以AC为直径的圆O上,AD=CD=DP=a,AP=CP=
2
a,DP∥AM,且AM=
1
2
DP,E,F分别为BP,CP的中点.
(I)证明:EF∥平面ADP;
(II)求三棱锥M-ABP的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•朝阳区一模)在如图所示的几何体中,四边形ABCD为平行四边形,∠ABD=90°,EB⊥平面ABCD,EF∥AB,AB=2,EF=1,BC=
13
,且M是BD的中点.
(Ⅰ)求证:EM∥平面ADF;
(Ⅱ)在EB上是否存在一点P,使得∠CPD最大?若存在,请求出∠CPD的正切值;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

在如图所示的几何体中,面CDEF为正方形,面ABCD为等腰梯形,AB∥CD,AB=2BC,∠ABC=60°,AC⊥FB.
(Ⅰ)求证:AC⊥平面FBC;
(Ⅱ)线段ED上是否存在点Q,使平面EAC⊥平面QBC?证明你的结论.

查看答案和解析>>

科目:高中数学 来源: 题型:

精英家教网在如图所示的几何体中,EA⊥平面ABC,DB⊥平面ABC,AC⊥BC,AC=BC=BD=2AE=2,M是AB的中点. 
(1)求证:CM⊥平面ABDE;
(2)求几何体的体积.

查看答案和解析>>

同步练习册答案