精英家教网 > 高中数学 > 题目详情
已知定义在上的奇函数满足,且在区间上是增函数,则当时,不等式的解集为(    )
A.B.C.D.
A

试题分析::∵定义在R上的奇函数满足
令x=x-4代入得f(x-8)=-f(x-4)=f(x),
令x=x+8)代入上式得f(x)=f(x+8),
∴函数f(x)为最小正周期是8的周期函数,
∵在区间[0,2]上是增函数,∴在区间[-2,0]上是增函数,在区间[-4,-2]上是减函数,
在区间[2,4]上是减函数,
即在区间[-4,4]上是函数f(x)的一个周期的图象,
∵xf‘(x)<0,即x与f'(x)符号相反,
∴xf‘(x)<0的解集为(-2,0)或(2,4),故选A。
点评:中档题,此类问题十分典型,利用数形结合思想,认识函数的性质,进一步确定不等式的解集。
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:填空题

已知,则的表达式是      ___    .

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

函数的图象大致是

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

函数的零点的个数为     

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

若函数的导函数则函数的单调递减区间是(   )
A.(2,4)B.(-3,-1)C.(1,3)D.(0,2)

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

对于在区间上有意义的两个函数,如果对于任意的,都有则称在区间上是“接近的”两个函数,否则称它们在区间上是“非接近的”两个函数。现有两个函数给定一个区间
(1)若在区间有意义,求实数的取值范围;
(2)讨论在区间上是否是“接近的”。

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知yf(x)是定义在R上的奇函数,当x≤0时,f(x)=2xx2.
(1)求x>0时,f(x)的解析式;
(2)若关于x的方程f(x)=2a2a有三个不同的解,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

函数的值域为       

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知函数.
(1)当时,证明:上为减函数;
(2)若有两个极值点求实数的取值范围.

查看答案和解析>>

同步练习册答案