精英家教网 > 高中数学 > 题目详情
4.已知函数f(x)对于任意实数x满足条件f(x+2)=-$\frac{1}{f(x)}$(f(x)≠0).
(1)求证:函数f(x)是周期函数;
(2)若f(1)=-5,求f(f(5))的值.

分析 (1)分析f(x+2)=-$\frac{1}{f(x)}$的特点,可知f(x+2+2)=-$\frac{1}{f(x+2)}$=f(x),得出结论;
(2)由f(1)=-5,利用周期性和条件可得f(5)=f(1+4)=f(1)=-5,f(1)=-$\frac{1}{f(-1)}$,进而求出f(f(5))=f(-5)=f(-1-4)=f(-1)=$\frac{1}{5}$.

解答 证明:(1)f(x+2+2)=-$\frac{1}{f(x+2)}$=f(x).
∴f(x+4)=f(x),
∴函数f(x)是周期为4的周期函数;
(2)f(1)=-5,
∴f(5)=f(1+4)=f(1)=-5,f(1)=-$\frac{1}{f(-1)}$,
∴f(f(5))=f(-5)=f(-1-4)=f(-1)=$\frac{1}{5}$.

点评 考查了周期函数的判断和利用周期函数的性质和条件解决实际问题,应熟记题型特点.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

14.过P(1,2)与直线x-2y+1=0垂直的直线方程为(  )
A.2x+y+4=0B.2x-y-4=0C.2x+y-4=0D.2x-y+4=0

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.若将半径为2的半圆卷成一个圆锥,则它的体积为(  )
A.$\frac{\sqrt{3}π}{3}$B.$\sqrt{3}π$C.$\frac{\sqrt{5}}{3}π$D.$\sqrt{5}π$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.如图,已知△ABC中,O为AC中点,∠ABC=90°,P为△ABC所在平面外一点,且PA=PB=PC,证明:平面PAC⊥平面ABC.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.若$\frac{sinα+cosα}{sinα-cosα}=2$,则sin(α-5π)•cos(3π-α)等于(  )
A.$\frac{3}{4}$B.$\frac{3}{10}$C.±$\frac{3}{10}$D.-$\frac{3}{10}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.已知函数f(x)=2cos(3x+$\frac{π}{4}$).
(1)求f(x)的单调递增区间.
(2)求f(x)的最小值及取得最小值时相应的x值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.正方体ABCD-A1B1C1D1的棱长为1,E为BB1的中点,F为AD的中点,以DA,DC,DD1为x轴、y轴、z轴建立空间直角坐标系,设平面D1EF的法向量为(ak,bk,ck)(k≠0),则平面D1EF的法向量是(4k,-3k,2k)(k≠0).

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.已知倾斜角为$\frac{π}{4}$的直线l被双曲线x2-4y2=60截得弦长|AB|=8$\sqrt{2}$,以AB为直径的圆的方程为(x+12)2+(y+3)=32或(x-12)2+(y-3)=32.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.下列四个结论:
①若x>0,则x>sinx恒成立;
②命题“若x-sinx=0,则x=0”的逆命题为“若x≠0,则x-sinx≠0”;
③P命题的否命题和P命题的逆命题同真同假④若|C|>0则C>0
其中正确结论的个数是(  )
A.1个B.2个C.3个D.4

查看答案和解析>>

同步练习册答案