(本题满分18分,其中第1小题6分,第2小题4分,第3小题8分)
现有变换公式
:
可把平面直角坐标系上的一点
变换到这一平面上的一点
.
(1)若椭圆
的中心为坐标原点,焦点在
轴上,且焦距为
,长轴顶点和短轴顶点间的距离为2. 求该椭圆
的标准方程,并求出其两个焦点
、
经变换公式
变换后得到的点
和
的坐标;
(2) 若曲线
上一点
经变换公式
变换后得到的点
与点
重合,则称点
是曲线
在变换
下的不动点. 求(1)中的椭圆
在变换
下的所有不动点的坐标;
(3) 在(2)的基础上,试探究:中心为坐标原点、对称轴为坐标轴的椭圆和双曲线在变换
下的不动点的存在情况和个数.
略
(1)设椭圆
的标准方程为
(
),由椭圆定义知焦距
,即
…①.
又由条件得
…②,故由①、②可解得
,
.
即椭圆
的标准方程为
.
且椭圆
两个焦点的坐标分别为
和
.
对于变换
:
,当
时,可得![]()
设
和
分别是由
和
的坐标由变换公式
变换得到.于是,
,即
的坐标为
;
又
即
的坐标为
.
(2)设
是椭圆
在变换
下的不动点,则当
时,
有![]()
![]()
,由点
,即
,得:![]()
,因而椭圆
的不动点共有两个,分别为
和
.
(3)由(2)可知,曲线
在变换
下的不动点
需满足
.
情形一:据题意,不妨设椭圆方程为
(
),
则有
.
因为
,所以
恒成立,因此椭圆在变换
下的不动点必定存在,且一定有2个不动点.
情形二:设双曲线方程为
(
),
则有
,
因为
,故当
时,方程
无解;[来源:学。科。网Z。X。X。K]
当
时,故要使不动点存在,则需
,
因此,当且仅当![]()
时,双曲线在变换
下一定有2个不动点.否则不存在不动点.
进一步分类可知,
(i) 当
,
时,![]()
![]()
.
即双曲线的焦点在
轴上时,需满足
时,双曲线在变换
下一定有2个不动点.否则不存在不动点.
(ii) 当
,
时,
.
即双曲线的焦点在
轴上时,需满足
时,双曲线在变换
下一定有2个不动点.否则不存在不动点.
科目:高中数学 来源:上海市嘉定、黄浦区2010届高三第二次模拟考试数学文 题型:解答题
(本题满分18分)本题共有3个小题,第1小题满分3分,第2小题满分8分,第3小题满分7分.
已知抛物线
(
且
为常数),
为其焦点.
(1)写出焦点
的坐标;
(2)过点
的直线与抛物线相交于
两点,且
,求直线
的斜率;
(3)若线段
是过抛物线焦点
的两条动弦,且满足
,如图所示.求四边形
面积的最小值
.![]()
查看答案和解析>>
科目:高中数学 来源:2011-2012学年山东省济宁市高三第二次月考文科数学 题型:解答题
(本题满分18分)已知抛物线C的顶点在原点,焦点在y轴正半轴上,点
到其准线的距离等于5.
(Ⅰ)求抛物线C的方程;
(Ⅱ)如图,过抛物线C的焦点的直线从左到右依次与抛物线C及圆
交于A、C、D、B四点,试证明
为定值;
(Ⅲ)过A、B分别作抛物C的切线
且
交于点M,求
与
面积之和的最小值.
![]()
查看答案和解析>>
科目:高中数学 来源:2011-2012学年上海市高三模拟考试理科数学 题型:解答题
(本题满分18分,其中第1小题4分,第2小题6分,第,3小题8分)
一青蛙从点
开始依次水平向右和竖直向上跳动,其落点坐标依次是
,(如图所示,
坐标以已知条件为准),
表示青蛙从点
到点
所经过的路程。
(1) 若点
为抛物线![]()
准线上
一点,点
,
均在该抛物线上,并且直线![]()
经
过该抛物线的焦点,证明
.
(2)若点
要么落在
所表示的曲线上,
要么落在
所表示的曲线上,并且
,
试写出
(不需证明);
(3)若点
要么落在
所表示的曲线上,要么落在
所表示的曲线上,并且
,求
的表达式.
![]()
查看答案和解析>>
科目:高中数学 来源:上海市普陀区2010届高三第二次模拟考试数学文 题型:解答题
(本题满分18分,其中第1小题6分,第2小题4分,第3小题8分)
现有变换公式
:
可把平面直角坐标系上的一点
变换到这一平面上的一点
.
(1)若椭圆
的中心为坐标原点,焦点在
轴上,且焦距为
,长轴顶点和短轴顶点间的距离为2. 求该椭圆
的标准方程,并求出其两个焦点
、
经变换公式
变换后得到的点
和
的坐标;
(2) 若曲线
上一点
经变换公式
变换后得到的点
与点
重合,则称点
是曲线
在变换
下的不动点. 求(1)中的椭圆
在变换
下的所有不动点的坐标;
(3) 在(2)的基础上,试探究:中心为坐标原点、对称轴为坐标轴的椭圆和双曲线在变换
下的不动点的存在情况和个数.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com