精英家教网 > 高中数学 > 题目详情
已知tanα,tanβ是方程x2+3
3
x+4=0的两个根,且-
π
2
<α<
π
2
,-
π
2
<β<
π
2
,则α+β=(  )
A、
π
3
B、-
2
3
π
C、
π
3
或-
2
3
π
D、-
π
3
2
3
π
分析:先根据韦达定理求得tanα•tnaβ和tanα+tanβ的值,进而利用正切的两角和公式求得tan(α+β)的值,根据tanα•tnaβ>0,tanα+tanβ<0推断出tanα<0,tanβ<0,进而根据已知的α,β的范围确定α+β的范围,进而求得α+β的值.
解答:解:依题意可知tanα+tanβ=-3
3
,tanα•tnaβ=4
∴tan(α+β)=
tanα+tanβ
1-tanαtanβ
=
3

∵tanα•tnaβ>0,tanα+tanβ<0
∴tanα<0,tanβ<0
∵-
π
2
<α<
π
2
,-
π
2
<β<
π
2

∴-π<α+β<0
∴α+β=-
3

故选B
点评:本题主要考查了两角和与差的正切函数的化简求值.考查了基础知识的运用.属基础题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知tanα,tanβ是方程x2+3
3
x+4=0的两根,α,β∈(-
π
2
π
2
)则α+β=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知命题(1)?α∈R,使sinαcosα=1成立;(2)?α∈R,使tan(α+β)=tanα+tanβ成立;(3)?α∈R,都有tan(α+β)=
tanα+tanβ
1-tanαtanβ
成立.其中正确命题的个数是(  )
A、3B、2C、1D、0

查看答案和解析>>

科目:高中数学 来源: 题型:

已知tanα,tanβ是一元二次方程2mx2+(4m-2)x+2m-3=0的两个不等实根,求函数f(m)=5m2+3mtan(α+β)+4的值域.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知tanα、tanβ是方程x2-4x-2=0的两个实根,求:cos2(α+β)+2sin(α+β)cos(α+β)-3sin2(α+β)的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知tanα,tanβ是方程x2+3
3
x+4=0
的两根,且α,β∈(-
π
2
π
2
)
,则α+β=(  )
A、
π
3
-
3
B、-
π
3
3
C、
π
3
D、-
3

查看答案和解析>>

同步练习册答案