精英家教网 > 高中数学 > 题目详情

平面内与直线平行的非零向量称为直线的方向向量,与直线的方向向量垂直的非零向量称为直线的法向量.在平面直角坐标系中,利用求动点轨迹方程的方法,可以求出过点且法向量为的直线(点法式)方程为,化简后得.则在空间直角坐标系中,平面经过点,且法向量为的平面(点法式)方程化简后的结果为        

 

【答案】

【解析】解:根据法向量的定义,若 n 为平面α的法向量

则 n ⊥α,任取平面α内一点P(x,y,z),

则 PA ⊥ n∵PA=(2-x,1-y,3-z),

 n =(-1,2,1)

∴(x-2)+2(1-y)+(3-z)=0

即:x-2y-z+3=0

故答案为:x-2y-z+3=0

 

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

“直线l与平面α平行”是“直线l与平面α内无数条直线都平行”的(  )条件.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•浙江模拟)平面内与直线平行的非零向量称为直线的方向向量;与直线的方向向量垂直的非零向量称为直线的法向量.在平面直角坐标系中,利用求动点的轨迹方程的方法,可以求出过点A(2,1)且法向量为
n
=(-1,2)的直线
(点法式)方程为-(x-2)+2(y-1)=0,化简后得x-2y=0.类比以上求法,在空间直角坐标系中,经过点A(2,1,3),且法向量为
n
=(-1,2,1)
的平面(点法式)方程为
x-2y-z+3=0
x-2y-z+3=0
(请写出化简后的结果).

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

平面内与直线平行的非零向量称为直线的方向向量;与直线的方向向量垂直的非零向量称为直线的法向量.在平面直角坐标系中,利用求动点的轨迹方程的方法,可以求出过点A(2,1)且法向量为数学公式(点法式)方程为-(x-2)+2(y-1)=0,化简后得x-2y=0.类比以上求法,在空间直角坐标系中,经过点A(2,1,3),且法向量为数学公式的平面(点法式)方程为________(请写出化简后的结果).

查看答案和解析>>

科目:高中数学 来源:2011-2012学年浙江省五校第二次联考数学试卷(文科)(解析版) 题型:填空题

平面内与直线平行的非零向量称为直线的方向向量;与直线的方向向量垂直的非零向量称为直线的法向量.在平面直角坐标系中,利用求动点的轨迹方程的方法,可以求出过点A(2,1)且法向量为(点法式)方程为-(x-2)+2(y-1)=0,化简后得x-2y=0.类比以上求法,在空间直角坐标系中,经过点A(2,1,3),且法向量为的平面(点法式)方程为    (请写出化简后的结果).

查看答案和解析>>

同步练习册答案