精英家教网 > 高中数学 > 题目详情
以椭圆
x2
25
+
y2
16
=1
的焦点为顶点,离心率为2的双曲线方程为
x2
9
-
y2
27
=1
x2
9
-
y2
27
=1
分析:求得椭圆的焦点,求得双曲线的顶点,从而可得几何量,即可求得结论.
解答:解:∵椭圆
x2
25
+
y2
16
=1
的焦点为(±3,0)
∴双曲线的顶点为(±3,0),离心率为2
∴a=3,
c
a
=2

∴c=6,∴b=
c2-a2
=3
3

∴双曲线方程为
x2
9
-
y2
27
=1

故答案为:
x2
9
-
y2
27
=1
点评:本题考查椭圆、双曲线的几何性质,考查双曲线的标准方程,属于基础题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

以下四个关于圆锥曲线的命题中:
①设A、B为两个定点,k为非零常数,|
PA
|-|
PB
|=k
,则动点P的轨迹为双曲线;
②以过抛物线的焦点的一条弦AB为直径作圆,则该圆与抛物线的准线相切;
③方程2x2-5x+2=0的两根可分别作为椭圆和双曲线的离心率;
④双曲线
x2
25
-
y2
9
=1与椭圆
x2
35
+y2=1
有相同的焦点.
其中真命题的序号为
 
(写出所有真命题的序号)

查看答案和解析>>

科目:高中数学 来源: 题型:

以下是关于圆锥曲线的四个命题:
①设A、B为两个定点,k为非零常数,若PA-PB=k,则动点P的轨迹是双曲线;
②方程2x2-5x+2=0的两根可分别作为椭圆和双曲线的离心率;
③双曲线
x2
25
-
y2
9
=1
与椭圆
x2
35
+y2=1
有相同的焦点;
④以过抛物线的焦点的一条弦AB为直径作圆,则该圆与抛物线的准线相切.
其中真命题为
②③④
②③④
(写出所以真命题的序号).

查看答案和解析>>

科目:高中数学 来源: 题型:

给出下列命题:
①若椭圆
x2
25
+
y2
16
=1
的左右焦点分别为F1、F2,动点P满足|PF1|+|PF2|>6,则动点P不一定在该椭圆外部;
②以抛物线y2=2px(p>0)的焦点为圆心,以
p
2
为半径的圆与该抛物线必有3个不同的公共点;
③双曲线
x2
25
-
y2
9
=1
与椭圆
x2
35
+y2=1
有相同的焦点;
④抛物线y2=4x上动点P到其焦点的距离的最小值≥1.
其中真命题的序号为
①③④
①③④
.(写出所有真命题的序号)

查看答案和解析>>

科目:高中数学 来源: 题型:

双曲线M的中心在原点,并以椭圆
x2
25
+
y2
13
=1的焦点为焦点,以抛物线y2=-2
3
x的准线为右准线.
(1)求双曲线M的方程;
(2)设直线l:y=kx+3与双曲线M相交于A、B两点,O是原点.求k值,使
OA
OB
=0.

查看答案和解析>>

科目:高中数学 来源: 题型:

双曲线M的中心在原点,并以椭圆
x2
25
+
y2
13
=1的焦点为焦点,以抛物线y2=-2
3
x的准线为右准线.
(Ⅰ)求双曲线M的方程;
(Ⅱ)设直线l:y=kx+3 与双曲线M相交于A、B两点,O是原点.
①当k为何值时,使得
OA
OB
=0?
②是否存在这样的实数k,使A、B两点关于直线y=mx+12对称?若存在,求出k的值;若不存在,说明理由.

查看答案和解析>>

同步练习册答案