精英家教网 > 高中数学 > 题目详情

如果实数x,y满足x2+y2-4x+1=0,则数学公式的最大值是________.


分析:可看作的乘积,而可看作点(x,y)与原点连线的斜率,所以问题转化为求圆上一点与原点连线中斜率最大值的问题.
解答:设=k,则y=kx,
所以k为过原点与圆x2+y2-4x+1=0上点连线的斜率.
由几何意义知,k=tan600=
所以的最大值是
也就是的最大值是
故应填
点评:考查的几何意义,类似于本题中这样的分式形式求最值时一般都转化为求直线的斜率来解决.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

如果实数x,y满足
x+2y≤1
x≥0
y≥0
,则
4x+2y-16
x-3
的最大值为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

如果实数x、y满足(x-2)2+y2=3,则
y
x
的最大值为(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2007•武汉模拟)如果实数x、y满足
x-4y+3≤0
3x+5y-25≤0
x≥1
,目标函数z=kx+y的最大值为12,最小值3,那么实数k的值为(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

如果实数x,y满足
x-y+2≥0
x+y-4≥0
2x-y-5≤0
,则z=|x+2y+4|的最大值
29
29

查看答案和解析>>

科目:高中数学 来源: 题型:

(2010•天津模拟)如果实数x、y满足
x-4y+3≤0
3x+5y-25≤0
x≥1
,目标函数z=kx+y的最大值为12,最小值3,那么实数k的值为
2
2

查看答案和解析>>

同步练习册答案