精英家教网 > 高中数学 > 题目详情
P、Q分别为3x+4y-10=0与6x+8y+5=0上任意一点,则|PQ|的最小值为(  )
A、
9
5
B、
5
2
C、3
D、6
分析:由题意可知两条直线平行,直接利用平行线的距离公式求解即可.
解答:解:因为3x+4y-10=0与6x+8y+5=0是平行线,即3x+4y-10=0与3x+4y+
5
2
=0所以|PQ|的最小值d=
|-10-
5
2
|
32+42
=
5
2
'
故选B.
点评:本题考查两条平行线间的距离公式,注意平行线的系数对应相等是易错点.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知圆C1:(x-2cosθ)2+(y-2sinθ)2=1与圆C2:x2+y2=1,在下列说法中:
①对于任意的θ,圆C1与圆C2始终相切;
②对于任意的θ,圆C1与圆C2始终有四条公切线;
③当θ=
π
6
时,圆C1被直线l:
3
x-y-1=0
截得的弦长为
3

④P,Q分别为圆C1与圆C2上的动点,则|PQ|的最大值为4.
其中正确命题的序号为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知第一象限内的点M到x轴、y轴的距离分别为5、4,点N的坐标是(0,3),经过点M、N的圆P的圆心P在x轴上.
(1)求圆P的方程   
(2)若点Q(x,y)在圆P上,求:3x+4y的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知双曲线
x2
a2
-
y2
b2
=1(a>0,b>0)
的离心率为e,右顶点为A,左、右焦点分别为F1、F2,点E为右准线上的动点,∠AEF2的最大值为θ.
(1)若双曲线的左焦点为F1(-4,0),一条渐近线的方程为3x-2y=0,求双曲线的方程;
(2)求sinθ(用e表示);
(3)如图,如果直线l与双曲线的交点为P、Q,与两条渐近线的交点为P'、Q',O为坐标原点,求证:
OP
+
OQ
=
OP′
+
OQ′

查看答案和解析>>

科目:高中数学 来源: 题型:

定义:设P、Q分别为曲线C1和C2上的点,把P、Q两点距离的最小值称为曲线C1到C2的距离.
(1)求曲线C:y=x2到直线l:2x-y-4=0的距离;
(2)若曲线C:(x-a)2+y2=1到直线l:y=x-1的距离为3,求实数a的值;
(3)求圆O:x2+y2=1到曲线y=
2x-3x-2
(x>2)
的距离.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

已知圆C1:(x-2cosθ)2+(y-2sinθ)2=1与圆C2:x2+y2=1,在下列说法中:
①对于任意的θ,圆C1与圆C2始终相切;
②对于任意的θ,圆C1与圆C2始终有四条公切线;
③当θ=
π
6
时,圆C1被直线l:
3
x-y-1=0
截得的弦长为
3

④P,Q分别为圆C1与圆C2上的动点,则|PQ|的最大值为4.
其中正确命题的序号为 ______.

查看答案和解析>>

同步练习册答案